首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   11篇
  国内免费   3篇
  2023年   3篇
  2022年   1篇
  2020年   3篇
  2019年   6篇
  2018年   3篇
  2017年   1篇
  2015年   3篇
  2014年   7篇
  2013年   11篇
  2012年   3篇
  2011年   3篇
  2010年   13篇
  2009年   5篇
  2008年   1篇
  2007年   9篇
  2006年   8篇
  2005年   4篇
  2004年   11篇
  2003年   1篇
  2002年   5篇
  2001年   5篇
  2000年   6篇
  1999年   7篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   12篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1979年   2篇
  1978年   1篇
  1977年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有177条查询结果,搜索用时 328 毫秒
141.
Biochemical and structural work has revealed the importance of phospholipids in biogenesis, folding and functional modulation of membrane proteins. Therefore, the nature of protein-phospholipid interaction is critical to understand such processes. Here, we have studied the interaction of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPG) mixtures with the lactose permease (LacY), the sugar/H+ symporter from Escherichia coli and a well characterized membrane transport protein. FRET measurements between single-W151/C154G LacY reconstituted in a lipid mixture composed of POPE and POPG at different molar ratios and pyrene-labeled PE or PG revealed a different phospholipid distribution between the annular region of LacY and the bulk lipid phase. Results also showed that both PE and PG can be part of the annular region, being PE the predominant when the PE:PG molar ratio mimics the membrane of E. coli. Furthermore, changes in the thermotropic behavior of phospholipids located in this annular region confirm that the interaction between LacY and PE is stronger than that of LacY and PG. Since PE is a proton donor, the results obtained here are discussed in the context of the transport mechanism of LacY.  相似文献   
142.
In Escherichia coli, disruption of ptsG, which encodes the glucose-specific permease of the phosphotransferase transport system (PTS) protein EIICBGlc, is crucial for high succinate production. This mutation can, however, cause very slow growth and low glucose consumption rates. The ptsG mutant (TUQ2), from wild type E. coli W1485, and E. coli galP (encoding galactose permease) and glk (encoding glucose kinase) gene expression plasmids were constructed. TUQ2 increased the generation time to approximately 4 h and gave a higher final cell density of 0.5 g/l by expression of galP. However, glk expression had no effect on the mutant. After expression of pyruvate carboxylase (PYC) and galactose permease, the ptsG mutant showed higher succinate yield (1.2 mol/mol glucose) and the specific rate of glucose consumption from 0.33 to 0.6 g/1 h. Received 31 August 2005; Revisions requested 27 September 2005; Revisions received 1 November 2005; Accepted 2 November 2005 An erratum to this article is available at .  相似文献   
143.
Summary The glutamine permease operon encoding the high-affinity transport system of glutamine in Escherichia coli could be cloned in one of the mini F plasmids, but not in pBR322 or pACYC184, by selection for restoration of the Gln+ phenotype, the ability to utilize glutamine as a sole carbon source. We determined the nucleotide sequence of the glutamine permease operon, which contains the structural gene of the periplasmic glutamine-binding protein (glnH), an indispensable component of the permease activity. The N-terminal amino acid sequence and the overall amino acid composition of the purified glutamine-binding protein were in good agreement with those predicted from the nucleotide sequence, if the N-terminal 22 amino acid residues were discounted. The latter comprised two Lys residues (nos. 2 and 6) followed by 16 hydrophobic amino acid residues and was assumed to be a signal peptide for transport into the periplasmic space. There were two additional reading frames (glnP and glnQ) downstream of glnH sharing a common promoter. It was concluded that the glnP and glnQ proteins as well as the glnH protein are essential for glutamine permease activity.  相似文献   
144.
Summary Two new protocols for the three-dimensional, triple resonance, constant-time HCA(CO)N NMR experiment are presented that significantly increase the experimental resolution attainable in the C frequency dimension. Experimental verification of the new experiments is provided by spectra of the IIA domain of glucose permease fromBacillus subtilis.  相似文献   
145.
A spontaneous mutant 9R-4 resistant to 2-deoxyglucose (2DG) was derived from a wild-type strain Pediococcus halophilus I-13. Phosphoenolpyruvate (PEP)-dependent glucose-6-phosphate formation by the permeabilized 9R-4 cells was < 5% of that observed with the parent I-13. In vitro complementation of PEP-dependent 2DG-6-phosphate formation was assayed with combination of the cytoplasmic and membrane fractions prepared from the I-13 and the mutants (9R-4, and X-160 isolated from nature), which were defective in PEP: mannose phosphotransferase system (man:PTS). The defects in man:PTS of both the strain 9R-4 and X-160 were restricted to the membrane fraction (e.g. EIIman), not to the cytoplasmic one. Kinetic studies on the glucose transport with intact cells and iodoacetate-treated cells also supported the presence of two distinct transport systems in this bacterium as follows: (i) The wild-type I-13 possessed a high-affinity man:PTS (K m=11 M) and a low-affinity proton motive force driven glucose permease (GP) (K m=170 M). (ii) Both 9R-4 and X-160 had only the low-affinity system (K m=181 M for 9R-4, 278 M for X-160). In conclusion, a 2DG-induced selective defect in the membrane component (EIIman) of the man:PTS could partially release glucose-mediated catabolite repression but not frutose-mediated catabolite repression in soy pediococci.Abbreviations GCR glucose-mediated catabolite repression - FCR fructose-mediated catabolite repression - PEP phosphoenolpyruvate - man:PTS phosphoenolpyruvate:mannose phosphotransferase system - glc:PTS phosphoenolpyruvate:glucose phosphotransferase system - GP glucose permease - CCCP carbonylcyanide mchlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - P proton motive force - G-6-P glucose-6-phosphate - 2DG 2-deoxyglucose - IAA iodoacetic acid - EIIman enzyme II component of man:PTS - EIIIman enzyme III component of man:PTS - EIIglc enzyme II component of glc:PTS - EIIIglc enzyme III component of glc:PTS  相似文献   
146.
It was suggested that the mutant ARF1 of Chlamydomonas reinhardtii is resistant to l-methionine-S-sulfoximine (MSX, an irreversible inhibitor of glutamine synthetase, EC 6.3.1.2) because this strain degraded and utilized this compound as a nitrogen source for growth (A.R. Franco et al., 1996, Plant Physiol 110: 1215–1222). Resistance to MSX has now been characterized in a double mutant of this alga, called MPA1, which is resistant to MSX and lacks l-amino acid oxidase (LAO activity, EC 1.4.3.2). Biochemical and genetic evidence indicate that the mutant MPA1 is altered in the same MSX-resistance locus as mutant ARF1. However, mutant MPA1 neither degraded nor utilized MSX as a nitrogen source. This led us to conclude that (i) resistance to MSX is not linked to its utilization, and (ii) that LAO activity accounts for the degradation of MSX in mutant ARF1. Data indicate that C. reinhardtii possesses a broad-specificity carrier system responsible for the transport of arginine and other amino acids, including MSX. We propose that the alteration of this carrier confers resistance to MSX in mutants ARF1 and MPA1. Received: 6 April 1998 / Accepted: 8 June 1998  相似文献   
147.
Using a functional lactose permease mutant devoid of Cys residues (C-less permease), each amino acid residue in the hydrophilic N-terminus and the first putative transmembrane helix was systematically replaced with Cys (from Tyr-2 to Trp-33). Twenty-three of 32 mutants exhibit high lactose accumulation (70-100% or more of C-less), and an additional 8 mutants accumulate to lower but highly significant levels. Surprisingly, Cys replacement for Gly-24 or Tyr-26 yields fully active permease molecules, and permease with Cys in place of Pro-28 also exhibits significant transport activity, although previous mutagenesis studies on these residues suggested that they may be required for lactose transport. As expected, Cys replacement for Pro-31 completely inactivates, in agreement with previous findings indicating that "helix-breaking" propensity at this position is necessary for full activity (Consler TG, Tsolas O, Kaback HR, 1991, Biochemistry 30:1291-1297). Twenty-nine mutants are present in the membrane in amounts comparable to C-less permease, whereas membrane levels of mutants Tyr-3-->Cys and Phe-12-->Cys are slightly reduced, as judged by immunological techniques. Dramatically, mutant Phe-9-->Cys is hardly detectable when expressed from the lac promoter/operator at a relatively low rate, but is present in the membrane in a stable form when expressed at a high rate from the T7 promoter. Finally, studies with N-ethylmalemide show that 6 Cys-replacement mutants that cluster at the C-terminal end of putative helix I are inactivated significantly.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
148.
In Escherichia coli, the role of lacA, the third gene of the lactose operon, has remained an enigma. I suggest that its role is the consequence of the need for cells to have safety valves that protect them from the osmotic effect created by their permeases. Safety valves allow them to cope with the buildup of osmotic pressure under accidental transient conditions. Multidrug resistance (MDR) efflux, thus named because of our anthropocentrism, is ubiquitous. Yet, the formation of simple leaks would result in futile influx/efflux cycles. Versatile modification enzymes with low sensitivity solve the problem if the modified metabolite is the one exported by MDR permeases. This may account for the pervasive presence of acetyltransferases, such as LacA, associated to acetyl‐metabolite exporters. This scenario of constraints imposed by efficient influx of metabolites provides us with a model that should be followed when constructing synthetic cells.  相似文献   
149.
Several studies have indicated the involvement of steryl glycosides in the cellular stress response. In this work, we have compared the effect of 1-O-cholesteryl-β-d-glucoside, 1-O-cholesteryl-β-d-galactoside and cholesterol on the properties of glycerophospholipid and sphingolipid bilayers. The studies were performed in order to gain insight into the change in membrane properties that would follow upon the glycosylation of cholesterol in cells subjected to stress. DPH anisotropy measurements indicated that the cholesteryl glycosides (10-40 mol%) increased the order of the hydrophobic region of a POPC bilayer almost as efficiently as cholesterol. In a PSM bilayer, the cholesteryl glycosides were however shown to be much less effective compared to cholesterol in ordering the hydrocarbon chain region at temperatures above the gel to liquid-crystalline phase transition. Fluorescence quenching analysis of multicomponent lipid bilayers demonstrated that the cholesteryl glycosides, in contrast to cholesterol, were unable to stabilize ordered domains rich in PSM against temperature-induced dissociation. When the sterols were incorporated into bilayers composed of both POPC and PSM, the cholesteryl glycosides showed a higher propensity, compared to cholesterol, to influence the endothermal component representing the melting of POPC-rich domains, as determined by differential scanning calorimetry. Taken together, the results indicate that the glycosylation of cholesterol diminishes the ability of the sterol to reside in lateral domains constituted by membrane lipids having highly ordered hydrocarbon chains.  相似文献   
150.
Biochemical and biophysical studies based upon crystal structures of both a mutant and wild-type lactose permease from Escherichia coli (LacY) in an inward-facing conformation have led to a model for the symport mechanism in which both sugar and H+ binding sites are alternatively accessible to both sides of the membrane. Previous findings indicate that the face of helix II with Asp68 is important for the conformational changes that occur during turnover. As shown here, replacement of Asp68 at the cytoplasmic end of helix II, particularly with Glu, abolishes active transport but the mutants retain the ability to bind galactopyranoside. In the x-ray structure, Asp68 and Lys131 (helix IV) lie within ∼ 4.2 Å of each other. Although a double mutant with Cys replacements at both position 68 and position 131 cross-links efficiently, single replacements for Lys131 exhibit very significant transport activity. Site-directed alkylation studies show that sugar binding by the Asp68 mutants causes closure of the cytoplasmic cavity, similar to wild-type LacY; however, strikingly, the probability of opening the periplasmic pathway upon sugar binding is markedly reduced. Taken together with results from previous mutagenesis and cross-linking studies, these findings lead to a model in which replacement of Asp68 blocks a conformational transition involving helices II and IV that is important for opening the periplasmic cavity. Evidence suggesting that movements of helices II and IV are coupled functionally with movements in the pseudo-symmetrically paired helices VIII and X is also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号