首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1987年   1篇
  1984年   1篇
  1979年   1篇
排序方式: 共有44条查询结果,搜索用时 93 毫秒
31.
Multimodal, molecular imaging allows the visualization of biological processes at cellular, subcellular, and molecular-level resolutions using multiple, complementary imaging techniques. These imaging agents facilitate the real-time assessment of pathways and mechanisms in vivo, which enhance both diagnostic and therapeutic efficacy. This article presents the protocol for the synthesis of biofunctionalized Prussian blue nanoparticles (PB NPs) - a novel class of agents for use in multimodal, molecular imaging applications. The imaging modalities incorporated in the nanoparticles, fluorescence imaging and magnetic resonance imaging (MRI), have complementary features. The PB NPs possess a core-shell design where gadolinium and manganese ions incorporated within the interstitial spaces of the PB lattice generate MRI contrast, both in T1 and T2-weighted sequences. The PB NPs are coated with fluorescent avidin using electrostatic self-assembly, which enables fluorescence imaging. The avidin-coated nanoparticles are modified with biotinylated ligands that confer molecular targeting capabilities to the nanoparticles. The stability and toxicity of the nanoparticles are measured, as well as their MRI relaxivities. The multimodal, molecular imaging capabilities of these biofunctionalized PB NPs are then demonstrated by using them for fluorescence imaging and molecular MRI in vitro.  相似文献   
32.
33.
A review of the literature on unusual metals as carcinogens was carried out. The metals covered are some of the rare earths, copper, silver, gold, mercury, germanium, tin, antimony, lead, platinum, palladium, aluminum, titanium, niobium, manganese, scandium, yttrium, indium, rhodium, and gallium.  相似文献   
34.
A target-specific MRI contrast agent for tumor cells expressing high affinity folate receptor was synthesized using generation five (G5) ofpolyamidoamine (PAMAM) dendrimer. Surface modified dendrimer was functionalized for targeting with folic acid (FA) and the remaining terminal primary amines of the dendrimer were conjugated with the bifunctional NCS-DOTA chelator that forms stable complexes with gadolinium (Gd III). Dendrimer-DOTA conjugates were then complexed with GdCl3 followed by ICP-OES as well as MRI measurement of their longitudinal relaxivity (T1 s(-1) mM(-1)) of water. In xenograft tumors established in immunodeficient (SCID) mice with KB human epithelial cancer cells expressing folate receptor (FAR), the 3D MRI results showed specific and statistically significant signal enhancement in tumors generated with targeted Gd(III)-DOTA-G5-FA compared with signal generated by non-targeted Gd(III)-DOTA-G5 contrast nanoparticle. The targeted dendrimer contrast nanoparticles infiltrated tumor and were retained in tumor cells up to 48 hours post-injection of targeted contrast nanoparticle. The presence of folic acid on the dendrimer resulted in specific delivery of the nanoparticle to tissues and xenograft tumor cells expressing folate receptor in vivo. We present the specificity of the dendrimer nanoparticles for targeted cancer imaging with the prolonged clearance time compared with the current clinically approved gadodiamide (Omniscan) contrast agent. Potential application of this approach may include determination of the folate receptor status of tumors and monitoring of drug therapy.  相似文献   
35.
Motexafin gadolinium (MGd, Xcytrin®) is a tumor-localizing redox mediator that catalyzes the oxidation of intracellular reducing molecules including NADPH, ascorbate, protein and non-protein thiols, generating reactive oxygen species (ROS). MGd localizes to tumors and cooperates with radiation and chemotherapy to kill tumor cells in tissue culture and animal models. In this report, we demonstrate that MGd triggers the mitochondrial apoptotic pathway in the HF-1 lymphoma cell line as determined by loss of mitochondrial membrane potential, release of cytochrome c from mitochondria, activation of caspase-9 prior to caspase-8, cleavage of PARP and annexin V binding. There was minimal effect on MGd-induced apoptosis by the caspase inhibitor z-VAD-fmk, even though caspase-3 activity (as measured by DEVD-cleavage) was completely inhibited. However, MGd-induced apoptosis was reduced to baseline levels by the more potent caspase inhibitor Q-VD-OPh, demonstrating that MGd-induced apoptosis is indeed caspase-dependent. Apoptosis induced by dexamethasone, doxorubicin and etoposide (mediated through the mitochondrial pathway) was also more sensitive to inhibition by Q-VD-OPh than z-VAD-fmk. Our results demonstrating differential sensitivity of drug-induced apoptosis to caspase inhibitors suggest that the term “caspase-independent apoptosis” cannot be solely defined as apoptosis that is not inhibited by z-VAD-fmk as has been utilized in some published studies.  相似文献   
36.
Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) are widely expressed enzymes implicated in the modulation of nucleotide cell signaling. They dephosphorylate either ATP or ADP in the presence of divalent cations, and efforts have been made to identify efficient inhibitors. E-NTPDase activity has been described in Torpedo electric organ electrocytes. We show here that gadolinium, an established blocker of stretch-activated channels, efficiently inhibits E-NTPDase activity of Torpedo electric organ (Ki = 3 microM for ATPase) as well as apyrase from potato tuber, frequently used in inhibition experiments. To our knowledge, gadolinium is the most potent inhibitor described to date for both membrane-bound and soluble E-NTPDases.  相似文献   
37.
After discussing numerous models for exudation from the xylem of roots, we present a new biphasic exudation model based on osmoregulation of the root symplast by stretch-activated ion channels (SA channels). We tested some features of the model in maize roots. (1) Using a microdrop recorder we showed that bathing the roots in 50 mmol m?3 gadolinium ions, known to inhibit some SA channels, inhibited xylem exudation by over 80% after 24h application. (2) Measuring xylem exudation from single roots into an attached micropipette revealed the capacity of the roots to perform strong autonomous exudation pulses. (3) In partially encased roots, the rhizodermis exuded water concurrently to xylem exudation. These results were regarded as supporting our model. An interesting observation with the microdrop recorder, which does not address the theory, is that addition of a variety of inorganic ions to distilled water as the roots' bathing medium instantaneously and reversibly increases xylem exudation, evidently nonosmotically.  相似文献   
38.
Nuclear magnetic resonance imaging relies upon differences in relaxation times for much of its ability to resolve anatomical structures and to detect changes in tissue. The natural differences can be changed by the administration of paramagnetic substances, such as metal complexes and stable organic free radicals, and ferromagnetic materials, such as small particles of magnetite. Detailed studies of the chemistry and biophysics of such substances in the body are required if they are to become safe and effective contrast agents for use in medical NMR imaging.  相似文献   
39.
Tracking the distribution and differentiation of stem cells by high-resolution imaging techniqueswould have significant clinical and research implications.In this study,a model cell-penetrating peptide wasused to carry gadolinium particles for magnetic resonance imaging (MRI) of mesenchymal stem cells (MSCs).MSCs were isolated from rat bone marrow and identified by osteogenic differentiation in vitro.The cell-penetrating peptide labeled with fluorescein-5-isothiocyanate (FITC) and gadolinium was synthesized by asolid-phase peptide synthesis method.Fluorescein imaging analysis confirmed that this new peptide couldinternalize into the cytoplasm and nucleus at room temperature,4℃ and 37℃.Gadolinium were efficientlyinternalized into mesenchymal stem cells by the peptide in a time or concentration-dependent manner,resulting in intercellular shortening of longitudinal relaxation enhancements,which were obviously detectedby 1.5 Tesla Magnetic Resonance Imaging.Cytotoxicity assay and flow cytometric analysis showed thatthe intercellular contrast medium incorporation did not affect cell viability at the tested concentrations.Thein vitro experiment results suggested that the new constructed peptides could be a vector for trackingMSCs.  相似文献   
40.
Gadolinium-based contrast agents (GBCAs) are widely used to improve tissue contrast during magnetic resonance imaging. Exposure to GBCAs can result in gadolinium deposition within human tissues and has become a clinical concern because of the potential toxic effects of free gadolinium (Gd3+). Here, we report the impact of a single administration of GBCAs (Omniscan and Gadovist), and Gd3+ on mouse tissues. Five-week-old male BALB/c mice were injected intravenously with GBCAs or Gd3+. Seven days after injection, relatively high levels of gadolinium were detected in the spleen (118.87 nmol/g tissue), liver (83.00 nmol/g tissue), skin (48.56 nmol/g tissue), and kidneys (25.59 nmol/g tissue) of the Gd(NO3)3 (high dose: 0.165 mmol/kg) group; in the bones (11.12 nmol/g tissue), kidneys (7.49 nmol/g tissue), teeth (teeth: 6.18 nmol/g tissue), and skin (2.43 nmol/g tissue) of the Omniscan (high dose: 1.654 mmol/kg) group and in the kidneys (16.36 nmol/g tissue) and skin (4.88 nmol/g tissue) of the Gadovist (high dose: 3.308 mmol/kg) group. Enlargement of the spleen was observed in the Gd3+ group (p < 0.05), but not in the Omniscan or Gadovist groups. Gd3+ caused iron accumulation around the white pulp of the spleen, suggesting that enlargement of the spleen is, at least in part, associated with Gd3+ and/or iron accumulation. Our results may help elucidate the relative risks of different types of gadolinium agents, the mechanisms involved, and even recognition of potential toxic effects of GBCAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号