首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4470篇
  免费   554篇
  国内免费   371篇
  2024年   13篇
  2023年   149篇
  2022年   186篇
  2021年   293篇
  2020年   239篇
  2019年   244篇
  2018年   216篇
  2017年   223篇
  2016年   187篇
  2015年   228篇
  2014年   271篇
  2013年   301篇
  2012年   187篇
  2011年   196篇
  2010年   143篇
  2009年   203篇
  2008年   228篇
  2007年   234篇
  2006年   262篇
  2005年   259篇
  2004年   224篇
  2003年   181篇
  2002年   162篇
  2001年   114篇
  2000年   72篇
  1999年   58篇
  1998年   40篇
  1997年   25篇
  1996年   22篇
  1995年   19篇
  1994年   22篇
  1993年   16篇
  1992年   20篇
  1991年   22篇
  1990年   16篇
  1989年   12篇
  1988年   10篇
  1987年   6篇
  1986年   6篇
  1985年   13篇
  1984年   15篇
  1983年   6篇
  1982年   11篇
  1981年   4篇
  1980年   9篇
  1979年   4篇
  1978年   8篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
排序方式: 共有5395条查询结果,搜索用时 299 毫秒
201.
Free‐standing single‐layer β‐sheets are extremely rare in naturally occurring proteins, even though β‐sheet motifs are ubiquitous. Here we report the crystal structures of three homologous, single‐layer, anti‐parallel β‐sheet proteins, comprised of three or four twisted β‐hairpin repeats. The structures reveal that, in addition to the hydrogen bond network characteristic of β‐sheets, additional hydrophobic interactions mediated by small clusters of residues adjacent to the turns likely play a significant role in the structural stability and compensate for the lack of a compact hydrophobic core. These structures enabled identification of a family of secreted proteins that are broadly distributed in bacteria from the human gut microbiome and are putatively involved in the metabolism of complex carbohydrates. A conserved surface patch, rich in solvent‐exposed tyrosine residues, was identified on the concave surface of the β‐sheet. These new modular single‐layer β‐sheet proteins may serve as a new model system for studying folding and design of β‐rich proteins.  相似文献   
202.
Understanding the mechanisms that enforce, maintain or reverse the process of speciation is an important challenge in evolutionary biology. This study investigates the patterns of divergence and discusses the processes that form and maintain divergent lineages of the tsetse fly Glossina fuscipes fuscipes in Uganda. We sampled 251 flies from 18 sites spanning known genetic lineages and the four admixture zones between them. We apply population genomics, hybrid zone and approximate Bayesian computation to the analysis of three types of genetic markers: 55,267 double‐digest restriction site‐associated DNA (ddRAD) SNPs to assess genome‐wide admixture, 16 microsatellites to provide continuity with published data and accurate biogeographic modelling, and a 491‐bp fragment of mitochondrial cytochrome oxidase I and II to infer maternal inheritance patterns. Admixture zones correspond with regions impacted by the reorganization of Uganda's river networks that occurred during the formation of the West African Rift system over the last several hundred thousand years. Because tsetse fly population distributions are defined by rivers, admixture zones likely represent both old and new regions of secondary contact. Our results indicate that older hybrid zones contain mostly parental types, while younger zones contain variable hybrid types resulting from multiple generations of interbreeding. These findings suggest that reproductive barriers are nearly complete in the older admixture zones, while nearly absent in the younger admixture zones. Findings are consistent with predictions of hybrid zone theory: Populations in zones of secondary contact transition rapidly from early to late stages of speciation or collapse all together.  相似文献   
203.
Avian diversity in the Neotropics has been traditionally attributed to the effect of vicariant forces promoting speciation in allopatry. Recent studies have shown that phylogeographical patterns shared among codistributed species cannot be explained by a single vicariant event, as species responses to a common barrier depend on the biological attributes of each taxon. The open vegetation corridor (OVC) isolates Amazonia and the Andean forests from the Atlantic Forest, creating a notorious pattern of avian taxa that are disjunctly codistributed in these forests. Here, we studied and compared the evolutionary histories of Ramphotrigon megacephalum and Pipraeidea melanonota, two passerines with allopatric populations east and west of the OVC that represent different subspecies. These species differ in their biological attributes: R. megacephalum is a sedentary, forest specialist mostly confined to bamboo understorey, whereas P. melanonota is a seasonal migrant and generalist species that ranges in a variety of closed and semi‐open environments. We performed genetic and genomic analyses, complemented with the study of coloration and behavioural differentiation, to assess population divergence across the OVC. We found that the evolutionary histories of both R. megacephalum and P. melanonota have been shaped by this environmental barrier. However, these species responded in different and asynchronous manners to the establishment of the OVC and to past connections between the currently isolated South American forests, which can be mostly explained by their distinct ecologies and dispersal abilities. Our results support the fact that the biological attributes of species can make their evolutionary histories idiosyncratic.  相似文献   
204.
From time to time, small, fragile, previously unknown fossil invertebrates are found in specialized habitats. Occasionally, as in the present case, a fragment of the original habitat that existed millions of years ago is also preserved. The present article describes a previously unknown microinvertebrate in Dominican amber that cannot be placed in any group of extant invertebrates. Placed in a new family, genus, and species, the fossil shares characters with both tardigrades and mites, but clearly belongs to neither group. The several hundred fossil individuals preserved in the amber shared their moist, warm habitat with pseudoscorpions, nematodes, fungi, and protozoa. The large number of fossils provided additional evidence of their biology, including their reproductive behavior, developmental stages, and food. While there is no extant group that can accommodate these fossils, and we have no knowledge of any extant descendants, this discovery shows that unique lineages of minute invertebrates were surviving in the mid‐Tertiary.  相似文献   
205.
206.
Atlantic herring (Clupea harengus), a vital ecosystem component and target of the largest Northwest Atlantic pelagic fishery, undergo seasonal spawning migrations that result in elusive sympatric population structure. Herring spawn mostly in fall or spring, and genomic differentiation was recently detected between these groups. Here we used a subset of this differentiation, 66 single nucleotide polymorphisms (SNPs) to analyze the temporal dynamics of this local adaptation and the applicability of SNP subsets in stock assessment. We showed remarkable temporal stability of genomic differentiation corresponding to spawning season, between samples taken a decade apart (2005 N = 90 vs. 2014 N = 71) in the Gulf of St. Lawrence, and new evidence of limited interbreeding between spawning components. We also examined an understudied and overexploited herring population in Bras d'Or lake (N = 97); using highly reduced SNP panels (NSNPs > 6), we verified little‐known sympatric spawning populations within this unique inland sea. These results describe consistent local adaptation, arising from asynchronous reproduction in a migratory and dynamic marine species. Our research demonstrates the efficiency and precision of SNP‐based assessments of sympatric subpopulations; and indeed, this temporally stable local adaptation underlines the importance of such fine‐scale management practices.  相似文献   
207.
Freshwater fish evolved from anadromous ancestors can be found in almost all continents. The roles of paleogeographic events and nature selection in speciation process often are under focus of research. We studied genetic diversity of anadromous and resident tapertail anchovies (Coilia nasus species complex) in the Yangtze River Basin using 4,434 nuclear loci, and tested the history of freshwater invasion of C. nasus. We found that both C. brachygnathus and C. nasus were valid species, but the resident C. nasus taihuensis and the anadromous C. nasus were not different genetically based on Bayes factor species delimitation (BFD*). Maximum likelihood tree, Network, PCA and STRUCTURE analyses all corroborated the results of BFD*. Two independent freshwater invasion events of C. nasus were supported, with the first event occurring around 4.07 Ma and the second happened around 3.2 Ka. The time of the two freshwater invasions is consistent with different paleogeographic events. Estimation showed that gene flow was higher within ecotypes than between different ecotypes. F‐DIST analyses identified 120 disruptive outliers by comparing C. brachygnathus to anadromous C. nasus, and 21 disruptive outliers by comparing resident C. nasus to anadromous C. nasus. Nine outliers were found to be common between the two comparisons, indicating that independent freshwater invasion of C. nasus might involve similar molecular pathways. The results of this study suggest that adaptation to landlocked freshwater environment of migratory fish can evolve multiple times independently, and morphology of landlocked ecotypes may cause confusion in their taxonomy.  相似文献   
208.
Despite the enormous advances in genetics, links between phenotypes and genotypes have been made for only a few nonmodel organisms. However, such links can be essential to understand mechanisms of ecological speciation. The Costa Rican endemic Mangrove Warbler subspecies provides an excellent subject to study differentiation with gene flow, as it is distributed along a strong precipitation gradient on the Pacific coast with no strong geographic barriers to isolate populations. Mangrove Warbler populations could be subject to divergent selection driven by precipitation, which influences soil salinity levels, which in turn influences forest structure and food resources. We used single nucleotide polymorphisms (SNPs) and morphological traits to examine the balance between neutral genetic and phenotypic divergence to determine whether selection has acted on traits and genes with functions related to specific environmental variables. We present evidence showing: (a) associations between environmental variables and SNPs, identifying candidate genes related to bill morphology (BMP) and osmoregulation, (b) absence of population genetic structure in neutrally evolving markers, (c) divergence in bill size across the precipitation gradient, and (d) strong phenotypic differentiation (PST) which largely exceeds neutral genetic differentiation (FST) in bill size. Our results indicate an important role for salinity, forest structure, and resource availability in maintaining phenotypic divergence of Mangrove Warblers through natural selection. Our findings add to the growing body of literature identifying the processes involved in phenotypic differentiation along environmental gradients in the face of gene flow.  相似文献   
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号