首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45145篇
  免费   17496篇
  国内免费   175篇
  62816篇
  2024年   12篇
  2023年   51篇
  2022年   67篇
  2021年   510篇
  2020年   2867篇
  2019年   4396篇
  2018年   4646篇
  2017年   4631篇
  2016年   4343篇
  2015年   4229篇
  2014年   4104篇
  2013年   4539篇
  2012年   3878篇
  2011年   4057篇
  2010年   3530篇
  2009年   2378篇
  2008年   2540篇
  2007年   1953篇
  2006年   1968篇
  2005年   1644篇
  2004年   1327篇
  2003年   1418篇
  2002年   1226篇
  2001年   947篇
  2000年   507篇
  1999年   313篇
  1998年   67篇
  1997年   70篇
  1996年   57篇
  1995年   65篇
  1994年   52篇
  1993年   64篇
  1992年   42篇
  1991年   36篇
  1990年   28篇
  1989年   28篇
  1988年   30篇
  1987年   30篇
  1986年   15篇
  1985年   26篇
  1984年   30篇
  1983年   16篇
  1982年   13篇
  1981年   7篇
  1980年   11篇
  1978年   7篇
  1977年   8篇
  1975年   6篇
  1974年   7篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
82.
83.
To develop a durable proton‐exchange membrane (PEM) for fuel‐cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s ( SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid–base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier‐transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy (1H NMR and 19F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three‐electrode cell configuration. The physicochemical properties of the membranes vital to fuel‐cell performance are also carefully evaluated under conditions relevant to fuel‐cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25°C to 90°C and excellent thermal stability up to 250°C. Upon elimination of unstable end groups, the co‐polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO‐HFB‐60 (HFB‐60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel‐cell performance to that of an NRE 212 membrane at 80°C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel‐cell applications.  相似文献   
84.
Functioning quantum dot (QD) sensitized solar cells have been fabricated using the vacuum deposition technique atomic layer deposition (ALD). Utilizing the incubation period of CdS growth by ALD on TiO2, we are able to grow QDs of adjustable size which act as sensitizers for solid‐state QD‐sensitized solar cells (ssQDSSC). The size of QDs, studied with transmission electron microscopy (TEM), varied with the number of ALD cycles from 1‐10 nm. Photovoltaic devices with the QDs were fabricated and characterized using a ssQDSSC device architecture with 2,2',7,7'‐tetrakis‐(N,N‐di‐p methoxyphenylamine) 9,9'‐spirobifluorene (spiro‐OMeTAD) as the solid‐state hole conductor. The ALD approach described here can be applied to fabrication of quantum‐confined structures for a variety of applications, including solar electricity and solar fuels. Because ALD provides the ability to deposit many materials in very high aspect ratio substrates, this work introduces a strategy by which material and optical properties of QD sensitizers may be adjusted not only by the size of the particles but also in the future by the composition.  相似文献   
85.
Developing a titanium dioxide (TiO2)‐based anode with superior high‐rate capability and long‐term cycling stability is important for efficient energy storage. Herein, a simple one‐step approach for fabricating blue TiO2 nanoparticles with oxygen vacancies is reported. Oxygen vacancies can enlarge lattice spaces, lower charge transfer resistance, and provide more active sites in TiO2 lattices. As a result, this blue TiO2 electrode exhibits a highly reversible capacity of 50 mAh g?1 at 100 C (16 800 mA g?1) even after 10 000 cycles, which is attributable to the combination of surface capacitive process and remarkable diffusion‐controlled insertion revealed by the kinetic analysis. The strategy of employing oxygen‐deficient nanoparticles may be extended to the design of other robust semiconductor materials as electrodes for energy storage.  相似文献   
86.
87.
88.
The present study explains the intraspecific variation in Indian Hill trout (Barilius bendelisis) on the basis of image based truss network system and D‐loop region of mtDNA. A total of 210 samples were collected from three different rivers (Teesta, Kameng and Myntudu River) of North East India in Indo‐Burma Biodiversity Hotspot. By using the software applications (tpsDig version 2.1 and PAST), a total of 25 morphometric measurements were generated from 10 landmarks. The Analysis of Variance (ANOVA), Factor Analysis (FA) and Discriminate Function Analysis (DFA) showed, out of the total variations, factor 1 explained 46.74% while factor 2 and factor 3 explained 27.14% and 11.92%, respectively. Using these variables 83.33% of the cross‐validated specimens were classified into distinct groups. Analysis of Molecular Variance (AMOVA) and pairwise Fst value for D‐loop region of mtDNA also showed high to medium level of genetic variation among the stocks and within the stocks. We conclude that the observed discrete stocks might be the result of changing environmental conditions in different rivers of the hotspot as the rivers are present at different altitudinal labels. It is also believed that the variation might be due to the construction of barrages across the river which hinder the mixing among the stocks.  相似文献   
89.
Strong barriers to genetic exchange can exist at divergently selected loci, whereas alleles at neutral loci flow more readily between populations, thus impeding divergence and speciation in the face of gene flow. However, ‘divergence hitchhiking’ theory posits that divergent selection can generate large regions of differentiation around selected loci. ‘Genome hitchhiking’ theory suggests that selection can also cause reductions in average genome‐wide rates of gene flow, resulting in widespread genomic divergence (rather than divergence only around specific selected loci). Spatial heterogeneity is ubiquitous in nature, yet previous models of genetic barriers to gene flow have explored limited combinations of spatial and selective scenarios. Using simulations of secondary contact of populations, we explore barriers to gene flow in various selective and spatial contexts in continuous, two‐dimensional, spatially explicit environments. In general, the effects of hitchhiking are strongest in environments with regular spatial patterning of starkly divergent habitat types. When divergent selection is very strong, the absence of intermediate habitat types increases the effects of hitchhiking. However, when selection is moderate or weak, regular (vs. random) spatial arrangement of habitat types becomes more important than the presence of intermediate habitats per se. We also document counterintuitive processes arising from the stochastic interplay between selection, gene flow and drift. Our results indicate that generalization of results from two‐deme models requires caution and increase understanding of the genomic and geographic basis of population divergence.  相似文献   
90.
This study was aimed at understanding the main abiotic environmental factors controlling the distribution patterns of abundance and composition of phytoplankton (size less than 10 μm) assemblages in the coastal waters of south‐eastern Côte d'Ivoire. Data were collected during two cruises, in January (low‐water period) and October (high‐water period) of 2014. A total of 67 species were identified and assigned to Bacillariophyceae (49%), Cyanophyceae (21%), Chlorophyceae (13%), Euglenophyceae (10%), Dinophyceae (4%) and Chrysophyceae (3%). Three biotic zones (I, IIA and IIB) were distinguishable on a Kohonen self‐organizing map after an unsupervised learning process. The diatom genera Eunotia sp., Navicula sp. and Actinoptychus senarius are significantly associated with I, IIA and IIB biotic zones, respectively. A clear seasonal cum salinity trend was apparent in phytoplankton distribution patterns. Turbidity and nitrate levels were the main abiotic factors controlling phytoplankton distribution in I, the upland tidal regions of the lagoon. In regions along the lagoon–sea continuum, phosphate and turbidity exert the most control during the low‐water season (IIA), while total dissolved solids control phytoplankton distribution during the high‐water season (IIB). These are climate‐sensitive parameters whose concentrations depend on prevailing hydroclimatic processes. Therefore, seasonality can have important consequences on phytoplankton community and inadvertently the productivity of these systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号