首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1820篇
  免费   196篇
  国内免费   34篇
  2050篇
  2024年   14篇
  2023年   41篇
  2022年   23篇
  2021年   62篇
  2020年   96篇
  2019年   74篇
  2018年   73篇
  2017年   91篇
  2016年   56篇
  2015年   77篇
  2014年   85篇
  2013年   140篇
  2012年   56篇
  2011年   54篇
  2010年   55篇
  2009年   85篇
  2008年   72篇
  2007年   63篇
  2006年   83篇
  2005年   57篇
  2004年   49篇
  2003年   60篇
  2002年   57篇
  2001年   53篇
  2000年   60篇
  1999年   34篇
  1998年   42篇
  1997年   29篇
  1996年   32篇
  1995年   30篇
  1994年   29篇
  1993年   25篇
  1992年   20篇
  1991年   17篇
  1990年   19篇
  1989年   15篇
  1988年   14篇
  1987年   11篇
  1986年   9篇
  1985年   18篇
  1984年   11篇
  1983年   8篇
  1982年   9篇
  1981年   7篇
  1980年   10篇
  1979年   9篇
  1978年   2篇
  1977年   7篇
  1976年   2篇
  1975年   2篇
排序方式: 共有2050条查询结果,搜索用时 0 毫秒
101.
There is little understanding of how climate change will impact potamodromous freshwater fishes. Since the mid 1970s, a decline in annual rainfall in south‐western Australia (a globally recognized biodiversity hotspot) has resulted in the rivers of the region undergoing severe reductions in surface flows (ca. 50%). There is universal agreement amongst Global Climate Models that rainfall will continue to decline in this region. Limited data are available on the movement patterns of the endemic freshwater fishes of south‐western Australia or on the relationship between their life histories and hydrology. We used this region as a model to determine how dramatic hydrological change may impact potamodromous freshwater fishes. Migration patterns of fishes in the largest river in south‐western Australia were quantified over a 4 year period and were related to a number of key environmental variables including discharge, temperature, pH, conductivity and dissolved oxygen. Most of the endemic freshwater fishes were potamodromous, displaying lateral seasonal spawning migrations from the main channel into tributaries, and there were significant temporal differences in movement patterns between species. Using a model averaging approach, amount of discharge was clearly the best predictor of upstream and downstream movement for most species. Given past and projected reductions in surface flow and groundwater, the findings have major implications for future recruitment rates and population viabilities of potamodromous fishes. Freshwater ecosystems in drying climatic regions can only be managed effectively if such hydro‐ecological relationships are considered. Proactive management and addressing existing anthropogenic stressors on aquatic ecosystems associated with the development of surface and groundwater resources and land use is required to increase the resistance and resilience of potamodromous fishes to ongoing flow reductions.  相似文献   
102.
中国淡水三角涡虫的核型分析   总被引:3,自引:0,他引:3  
用空气干燥法对安徽肥东龙泉山、安徽滁州琅?山、云南昆明海源寺龙潭和湖北恩施龙洞河4产地淡水三角涡虫的染色体组进行研究。结果表明:云南昆明海源寺龙潭的涡虫细胞中染色体数目有16条,24条和32条共3种类型,核型公式分别为2x=2n=16=16m,2x=3n=24=24m和2x=4n=32=32m。安徽肥东龙泉山、安徽滁州琅?山和湖北恩施龙洞河的涡虫细胞中染色体数目有16条和24条两种类型,核型公式分别为2x=2n=16=16m和2x=3n=24=24m。染色体组型分析初步鉴定上述4产地淡水三角涡虫均为日本三角涡虫(Dugesia japonica)。另外本文还对淡水三角涡虫的混倍体现象进行了探讨。  相似文献   
103.
Although studies on biodiversity and ecosystem function are often framed within the context of anthropogenic change, a central question that remains is how important are direct vs. indirect (via changes in biodiversity) effects of anthropogenic stressors on ecosystem functions in multitrophic-level communities. Here, we quantify the effects of the fungicide chlorothalonil on 34 species-, 2 community- and 11 ecosystem-level responses in a multitrophic-level system. At ecologically relevant concentrations, chlorothalonil increased mortality of amphibians, gastropods, zooplankton, algae and a macrophyte (reducing taxonomic richness), reduced decomposition and water clarity and elevated dissolved oxygen and net primary productivity. These ecosystem effects were indirect and predictable based on changes in taxonomic richness. A path analysis suggests that chlorothalonil-induced reductions in biodiversity and top-down and bottom-up effects facilitated algal blooms that shifted ecosystem functions. This work emphasises the need to re-evaluate the safety of chlorothalonil and to further link anthropogenic-induced changes in biodiversity to altered ecosystem functions.  相似文献   
104.
105.
1. Previous studies have identified lowland areas as barriers to gene flow (dispersal) between distinct mountain ranges in montane species of aquatic insects. In this study, we investigated the population genetic structure of two closely related Atalophlebia (mayfly) species inhabiting lowland areas of south‐east Queensland, Australia, with the expectation of widespread gene flow throughout the low‐altitude environment and associated homogeneous genetic structure. 2. In particular, we asked whether species with lower‐altitude distributions demonstrate greater spatial distribution of mtDNA (COI) alleles than the upland species studied previously. This pattern would be expected if good dispersal ability is associated with population persistence in these drought‐prone habitats. 3. The two species demonstrated contrasting genetic population structure. Atalophlebia sp. AV13 D revealed strong population structure, with populations on each side of the low‐altitude area isolated from each other for a long time (c.350 kya), and the presence of an isolation‐by‐distance pattern over relatively small geographical distances (<40 km). In contrast, Atalophlebia sp. AV13 A was panmictic at the scale investigated (≤160 km), with no history of past population fragmentation. 4. Examination of sample distribution along the altitudinal gradient reveals that Atalophlebia sp. AV13 D may have a more upland distribution (associated with greater habitat stability) than previously supposed, while Atalophlebia sp. AV13 A inhabits more xeric lowland areas, where freshwater habitats are less stable. We consequently hypothesise that these contrasting genetic population structures result from differences in habitat stability along the altitudinal gradient, only species with good dispersal ability being able to persist in unstable habitats. These findings may be applicable to other regions of the globe where habitat instability is associated with altitudinal gradients.  相似文献   
106.
1. A diverse array of patterns has been reported regarding the spatial extent of population genetic structure and effective dispersal in freshwater macroinvertebrates. In river systems, the movements of many taxa can be restricted to varying degrees by the natural stream channel hierarchy. 2. In this study, we sampled populations of the non‐biting freshwater midge Echinocladius martini in the Paluma bioregion of tropical northeast Queensland to investigate fine scale patterns of within‐ and among‐stream dispersal and gene flow within a purported historical refuge. We amplified a 639‐bp fragment of mitochondrial cytochrome c oxidase subunit I and analysed genetic structure using pairwise ΦST, hierarchical amova , Mantel tests and a parsimony network. Genetic variation was partitioned among stream sections, using Streamtree , to investigate the effect of potential instream dispersal barriers. 3. The data revealed strong natal site fidelity and significant differentiation among neighbouring, geographically proximate streams. We found evidence for only episodic adult flight among sites on separate stream reaches. Overall, however, our data suggested that both larval and adult dispersal was largely limited to within a stream channel. 4. This may arise from a combination of the high density of riparian vegetation physically restricting dispersal and from the joint effects of habitat stability and large population sizes. Together these latter may make it more likely that upstream populations will persist, even in the absence of regular compensatory upstream flight, and will thus reduce the adaptive value of dispersal among streams. Taken together, these data suggest that dispersal of E. martini is highly restricted, to the scale of only a few kilometres, and hence occurs predominantly within the natal stream.  相似文献   
107.
Dinoflagellates of the genus Ceratium are predominantly found in marine environments, with a few species in inland waters. Over the last decades, the freshwater species Ceratium hirundinella and Ceratium furcoides have colonized and invaded several South American basins. The purpose of this study was to create a distribution model for the invasive dinoflagellate C. furcoides in South America in order to further investigate the basins at potential risk, as well as the environmental conditions that influence its expansion. This species is known to develop blooms due to its mobility, resistance to sedimentation, and optimized use of resources. Although nontoxic, blooms of the species cause many problems to both the natural ecosystems and water users. Potential distribution was predicted by using a maximum entropy algorithm (MaxEnt). Model was run with 101 occurrences obtained from the scientific literature, and climatic, hydrological and topographic variables. The developed model had a very good performance for the study area. The most susceptible areas identified were mainly concentrated in the basins between southeastern Brazil and northeastern Argentina. Besides already affected regions, new potentially suitable areas were identified in temperate regions of South America. The information generated here will be useful for authorities responsible for water and watershed management to monitor the spread of this species and address problems related to its establishment in new environments.  相似文献   
108.
Ecological diversification of aquatic insects has long been suspected to have been driven by differences in freshwater habitats, which can be classified into flowing (lotic) waters and standing (lentic) waters. The contrasting characteristics of lotic and lentic freshwater systems imply different ecological constraints on their inhabitants. The ephemeral and discontinuous character of most lentic water bodies may encourage dispersal by lentic species in turn reducing geographical isolation among populations. Hence, speciation probability would be lower in lentic species. Here, we assess the impact of habitat use on diversification patterns in dragonflies (Anisoptera: Odonata). Based on the eight nuclear and mitochondrial genes, we inferred species diversification with a model‐based evolutionary framework, to account for rate variation through time and among lineages and to estimate the impact of larval habitat on the potentially nonrandom diversification among anisopteran groups. Ancestral state reconstruction revealed lotic fresh water systems as their original primary habitat, while lentic waters have been colonized independently in Aeshnidae, Corduliidae and Libellulidae. Furthermore, our results indicate a positive correlation of speciation and lentic habitat colonization by dragonflies: speciation rates increased in lentic Aeshnidae and Libellulidae, whereas they remain mostly uniform among lotic groups. This contradicts the hypothesis of inherently lower speciation in lentic groups and suggests species with larger ranges are more likely to diversify, perhaps due to higher probability of larger areas being dissected by geographical barriers. Furthermore, larger range sizes may comprise more habitat types, which could also promote speciation by providing additional niches, allowing the coexistence of emerging species.  相似文献   
109.
This study was designed to describe normal axial skeletal structure in common roach Rutilus rutilus from putative unaffected environmental conditions, and the occurrence of skeletal malformations in the fish from an area under radiation contamination. Specimens were collected from water bodies of the Techa Cascade Reservoirs located near the Mayak atomic industry plant in the River Ob' drainage, Chelyabinsk Province, Russia. One sample was collected from Lake Irtyash, a reservoir of drinkable water, supplying the town of Ozersk, and the other one from a technical reservoir which is a storage of liquid radioactive waste from Mayak and characterized by high radioactive contamination (mostly (90)Sr and (137)Cs). A comparison was made with historical material collected from the River Ob' before the middle of the 20th century, i.e. before the environment became affected by radioactive contamination. A high number of abnormalities of the axial skeleton were detected in both Mayak samples, in 94 and 97% of examined specimens, in contrast to about 20% in the historical specimens. The abnormalities were in both the unpaired fins and the vertebral column, including the caudal complex and included supernumerary elements, fusions, deformities and displacement of the elements. Most axial skeleton abnormalities, however, were minor, such as splitting, shortening or deformation of spines. Severe defects, such as extensive scolioses, lordoses and kyphoses, were not found. The causes of the abnormalities were not identified in this study, but the high incidence of malformations may be attributed to genetically determined imbalance during development. The almost equal distribution of abnormalities among the fish from non-contaminated and radioactive contaminated reservoirs may be explained by either recent gene flow within the population of R. rutilus in the River Techa system or the effect of unknown unfavourable environmental factors such as chemical pollution.  相似文献   
110.
Estimating species richness using environmental DNA   总被引:1,自引:0,他引:1       下载免费PDF全文
The foundation for any ecological study and for the effective management of biodiversity in natural systems requires knowing what species are present in an ecosystem. We assessed fish communities in a stream using two methods, depletion‐based electrofishing and environmental DNA metabarcoding (eDNA) from water samples, to test the hypothesis that eDNA provides an alternative means of determining species richness and species identities for a natural ecosystem. In a northern Indiana stream, electrofishing yielded a direct estimate of 12 species and a mean estimated richness (Chao II estimator) of 16.6 species with a 95% confidence interval from 12.8 to 42.2. eDNA sampling detected an additional four species, congruent with the mean Chao II estimate from electrofishing. This increased detection rate for fish species between methods suggests that eDNA sampling can enhance estimation of fish fauna in flowing waters while having minimal sampling impacts on fish and their habitat. Modern genetic approaches therefore have the potential to transform our ability to build a more complete list of species for ecological investigations and inform management of aquatic ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号