首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6447篇
  免费   886篇
  国内免费   263篇
  2024年   24篇
  2023年   136篇
  2022年   118篇
  2021年   272篇
  2020年   325篇
  2019年   334篇
  2018年   280篇
  2017年   312篇
  2016年   320篇
  2015年   323篇
  2014年   350篇
  2013年   465篇
  2012年   266篇
  2011年   291篇
  2010年   234篇
  2009年   333篇
  2008年   282篇
  2007年   281篇
  2006年   254篇
  2005年   224篇
  2004年   189篇
  2003年   204篇
  2002年   175篇
  2001年   173篇
  2000年   158篇
  1999年   108篇
  1998年   115篇
  1997年   89篇
  1996年   94篇
  1995年   74篇
  1994年   71篇
  1993年   80篇
  1992年   62篇
  1991年   62篇
  1990年   55篇
  1989年   55篇
  1988年   48篇
  1987年   40篇
  1986年   38篇
  1985年   43篇
  1984年   42篇
  1983年   25篇
  1982年   43篇
  1981年   41篇
  1980年   22篇
  1979年   25篇
  1978年   11篇
  1977年   12篇
  1976年   7篇
  1974年   4篇
排序方式: 共有7596条查询结果,搜索用时 312 毫秒
941.
Introgression can introduce novel genetic variation at a faster rate than mutation alone and result in adaptive introgression when adaptive alleles are maintained in the recipient genome over time by natural selection. A previous study from our group demonstrated adaptive introgression from Populus balsamifera into P. trichocarpa in a target genomic region. Here we expand our local ancestry analysis to the whole genome of both parents to provide a comprehensive view of introgression patterns and to identify additional candidate regions for adaptive introgression genomewide. Populus trichocarpa is a large, fast‐growing tree of mild coastal regions of the Pacific Northwest, whereas P. balsamifera is a smaller stature tree of continental and boreal regions with intense winter cold. The species hybridize where they are parapatric. We detected asymmetric patterns of introgression across the whole genome of these two poplar species adapted to contrasting environments, with stronger introgression from P. balsamifera to P. trichocarpa than vice versa. Admixed P. trichocarpa individuals contained more genomic regions with unusually high levels of introgression (19 regions) and also the largest introgressed genome fragment (1.02 Mb) compared with admixed P. balsamifera (nine regions). Our analysis also revealed numerous candidate regions for adaptive introgression with strong signals of selection, notably related to disease resistance, and enriched for genes that may play crucial roles in survival and adaptation. Furthermore, we detected a potential overrepresentation of subtelomeric regions in P. balsamifera introgressed into P. trichocarpa and possible protection of sex‐determining regions from interspecific gene flow.  相似文献   
942.
Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populations can prove challenging. Additionally, the physiological mechanisms that cause organismal dysfunction at extreme temperatures are still largely under debate. Using the green anole, Anolis carolinensis, we integrate measures of cold tolerance (CTmin), standard metabolic rate, heart size, blood lactate concentration and RNAseq data from liver tissue to investigate geographic variation in cold tolerance and its underlying mechanisms along a latitudinal cline. We found significant effects of thermal acclimation and latitude of origin on variation in cold tolerance. Increased cold tolerance correlates with decreased rates of oxygen consumption and blood lactate concentration (a proxy for oxygen limitation), suggesting elevated performance is associated with improved oxygen economy during cold exposure. Consistent with these results, co‐expression modules associated with blood lactate concentration are enriched for functions associated with blood circulation, coagulation and clotting. Expression of these modules correlates with thermal acclimation and latitude of origin. Our findings support the oxygen and capacity‐limited thermal tolerance hypothesis as a potential contributor to variation in reptilian cold tolerance. Moreover, differences in gene expression suggest regulation of the blood coagulation cascade may play an important role in reptilian cold tolerance and may be the target of natural selection in populations inhabiting colder environments.  相似文献   
943.
The genetic and environmental homogeneity in agricultural ecosystems is thought to impose strong and uniform selection pressures. However, the impact of this selection on plant pathogen genomes remains largely unknown. We aimed to identify the proportion of the genome and the specific gene functions under positive selection in populations of the fungal wheat pathogen Zymoseptoria tritici. First, we performed genome scans in four field populations that were sampled from different continents and on distinct wheat cultivars to test which genomic regions are under recent selection. Based on extended haplotype homozygosity and composite likelihood ratio tests, we identified 384 and 81 selective sweeps affecting 4% and 0.5% of the 35 Mb core genome, respectively. We found differences both in the number and the position of selective sweeps across the genome between populations. Using a XtX‐based outlier detection approach, we identified 51 extremely divergent genomic regions between the allopatric populations, suggesting that divergent selection led to locally adapted pathogen populations. We performed an outlier detection analysis between two sympatric populations infecting two different wheat cultivars to identify evidence for host‐driven selection. Selective sweep regions harboured genes that are likely to play a role in successfully establishing host infections. We also identified secondary metabolite gene clusters and an enrichment in genes encoding transporter and protein localization functions. The latter gene functions mediate responses to environmental stress, including interactions with the host. The distinct gene functions under selection indicate that both local host genotypes and abiotic factors contributed to local adaptation.  相似文献   
944.
Over the last decade, the genomic revolution has offered the possibility to generate tremendous amounts of data that contain valuable information on the genetic basis of phenotypic traits, such as those linked to human diseases or those that allow for species to adapt to a changing environment. Most ecologically relevant traits are controlled by a large number of genes with small individual effects on trait variation, but that are connected with one another through complex developmental, metabolic and biochemical networks. As a result, it has recently been suggested that most adaptation events in natural populations are reached via correlated changes at multiple genes at a time, for which the name polygenic adaptation has been coined. The current challenge is to develop methods to extract the relevant information from genomic data to detect the signature of polygenic evolutionary change. The symposium entitled “Detecting the Genomic Signal of Polygenic Adaptation and the Role of Epistasis in Evolution” held in 2017 at the University of Zürich aimed at reviewing our current state of knowledge. In this review, we use the talks of the invited speakers to summarize some of the most recent developments in this field.  相似文献   
945.
946.
Indiscriminate discharge of pharmaceutical waste into the aquatic ecosystem may pose serious health challenges to aquatic biota. The effect of acute exposure to ibuprofen was evaluated using changes in behaviour and haematological parameters under static bio-assay method in Clarias gariepinus. Test specimens were exposed to acute concentrations of ibuprofen (0.28, 0.33, 0.38, 0.43 and 0.48 mg l?1) for 24, 48, 72 and 96 h durations respectively. Behavioural and phenotypic changes were observed in surviving fish. There were significant (p < 0.05) concentration and duration-dependent increases in erythrocyte (RBC), haemoglobin (Hb), pack cell volume (PCV) and leukocytes (WBC) in treated fish compared to the control. Insignificant decreases (p > 0.05) in mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) were observed in treated fish compared to the control. Ibuprofen elicited dose and duration- dependent decrease in neutrophil counts with the decreases being significant (p < 0.05) in the higher doses of 0.43 and 0.48 mg l?1. Ibuprofen did not elicit any significant changes in monocytes, basophils and eosinophils. Changes observed in this study showed that ibuprofen negatively affected the health of the fish and we recommend that discharge of ibuprofen into the aquatic environment should be monitored and controlled.  相似文献   
947.
948.
Restoring the estimated 1 billion hectares of degraded forests must consider future climate accompanied by novel ecosystems. Transformational restoration can play a key role in adaptation to climate change but it is conceptually the most divergent from contemporary approaches favoring native species and natural disturbance regimes. Here, we review concepts of novelty in ecosystems with examples of emergent/neo-native and designed novel ecosystems, with application to transformational restoration. Danish forests have a high degree of novelty and provide a realistic context for discussing assisted migration, one method of transformational adaptation. Deforestation and impacts of past land use created a highly degraded landscape dominated by heathland in western Denmark. Restoration with non-native species began 150 years ago because the native broadleaves could not establish on the heathlands. Danish forestry continues to rely extensively on non-native species. Preparing for transformational adaptation requires risky research today to prepare for events in the future and refugia from the last glaciation may provide genetic material better adapted to future climate. A new project will test whether species and provenances from the Caspian forests in Iran possess greater genetic diversity and superior resistance (physiological adaptability) and resilience (evolutionary adaptability) and possibly a gene pool for future adaptation.  相似文献   
949.
Few regions have been more severely impacted by climate change in the USA than the Desert Southwest. Here, we use ecological genomics to assess the potential for adaptation to rising global temperatures in a widespread songbird, the willow flycatcher (Empidonax traillii), and find the endangered desert southwestern subspecies (E. t. extimus) most vulnerable to future climate change. Highly significant correlations between present abundance and estimates of genomic vulnerability – the mismatch between current and predicted future genotype–environment relationships – indicate small, fragmented populations of the southwestern willow flycatcher will have to adapt most to keep pace with climate change. Links between climate‐associated genotypes and genes important to thermal tolerance in birds provide a potential mechanism for adaptation to temperature extremes. Our results demonstrate that the incorporation of genotype–environment relationships into landscape‐scale models of climate vulnerability can facilitate more precise predictions of climate impacts and help guide conservation in threatened and endangered groups.  相似文献   
950.
The biogeographic response of oceanic planktonic communities to climatic change has a large influence on the future stability of marine food webs and the functioning of global biogeochemical cycles. Temperature plays a pivotal role in determining the distribution of these communities and ocean warming has the potential to cause major distributional shifts, particularly in polar regions where the thermal envelope is narrow. We considered the impact of long‐term ocean warming on the spatial distribution of Southern Ocean mesozooplankton communities through examining plankton abundance in relation to sea surface temperature between two distinct periods, separated by around 60 years. Analyses considered 16 dominant mesozooplankton taxa (in terms of biomass and abundance) in the southwest Atlantic sector of the Southern Ocean, from net samples and in situ temperature records collected during the Discovery Investigations (1926–1938) and contemporary campaigns (1996–2013). Sea surface temperature was found to have increased significantly by 0.74°C between the two eras. The corresponding sea surface temperature at which community abundance peaked was also significantly higher in contemporary times, by 0.98°C. Spatial projections indicated that the geographical location of community peak abundance had remained the same between the two eras despite the poleward advance of sea surface isotherms. If the community had remained within the same thermal envelope as in the 1920s–1930s, community peak abundance would be 500 km further south in the contemporary era. Studies in the northern hemisphere have found that dominant taxa, such as calanoid copepods, have conserved their thermal niches and tracked surface isotherms polewards. The fact that this has not occurred in the Southern Ocean suggests that other selective pressures, particularly food availability and the properties of underlying water masses, place greater constraints on spatial distributions in this region. It further demonstrates that this community is thermally resilient to present levels of sea surface warming.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号