首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10567篇
  免费   1069篇
  国内免费   2320篇
  13956篇
  2024年   49篇
  2023年   168篇
  2022年   215篇
  2021年   300篇
  2020年   407篇
  2019年   458篇
  2018年   461篇
  2017年   443篇
  2016年   469篇
  2015年   427篇
  2014年   482篇
  2013年   738篇
  2012年   424篇
  2011年   506篇
  2010年   392篇
  2009年   590篇
  2008年   529篇
  2007年   568篇
  2006年   554篇
  2005年   525篇
  2004年   475篇
  2003年   433篇
  2002年   405篇
  2001年   354篇
  2000年   300篇
  1999年   299篇
  1998年   245篇
  1997年   264篇
  1996年   258篇
  1995年   220篇
  1994年   198篇
  1993年   192篇
  1992年   207篇
  1991年   146篇
  1990年   165篇
  1989年   144篇
  1988年   128篇
  1987年   122篇
  1986年   95篇
  1985年   127篇
  1984年   90篇
  1983年   54篇
  1982年   113篇
  1981年   71篇
  1980年   49篇
  1979年   32篇
  1978年   21篇
  1977年   13篇
  1976年   6篇
  1975年   8篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
131.
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   
132.
Assessing the impact of episodic pollution   总被引:1,自引:0,他引:1  
Seager  John  Maltby  Lorraine 《Hydrobiologia》1989,188(1):633-640
The increased tightening of controls on industrial and municipal wastewater discharges has resulted in steady improvements in the quality of many important rivers over recent years. However, episodic pollution, particularly from farm wastes and combined sewer overflows continues to pose a major problem, and is one of the main causes of poor quality rivers today. Despite our acknowledgement of this continuing problem, very little is known of the mechanistic basis of responses and recovery of aquatic organisms and communities exposed to intermittent pulses of common pollutants. The majority of ecotoxicological studies to date have been concerned with the effects of continuous exposure. Although such studies may provide a means of predicting the impact of episodic pollution events, a more appropriate test design would be to assess toxicity under pulsed and fluctuating exposure. Studies should also include a post-exposure observation period and should consider recovery of individuals and communities. This paper reviews the results of reported studies relevant to the investigation of episodic pollution and pays particular attention to the effects of magnitude, duration and frequency of exposure. Results of field investigations using an in situ bioassay technique are also presented to emphasize the importance of field validation of proposed water quality criteria for intermittent pollution events.  相似文献   
133.
Bacillus circulans xylanase contains two histidines, one of which (His 156) is solvent exposed, whereas the other (His 149) is buried within its hydrophobic core. His 149 is involved in a network of hydrogen bonds with an internal water and Ser 130, as well as a potential weak aromatic-aromatic interaction with Tyr 105. These three residues, and their network of interactions with the bound water, are conserved in four homologous xylanases. To probe the structural role played by His 149, NMR spectroscopy was used to characterize the histidines in BCX. Complete assignments of the 1H, 13C, and 15N resonances and tautomeric forms of the imidazole rings were obtained from two-dimensional heteronuclear correlation experiments. An unusual spectroscopic feature of BCX is a peak near 12 ppm arising from the nitrogen bonded 1H epsilon 2 of His 149. Due to its solvent inaccessibility and hydrogen bonding to an internal water molecule, the exchange rate of this proton (4.0 x 10(-5) s-1 at pH*7.04 and 30 degrees C) is retarded by > 10(6)-fold relative to an exposed histidine. The pKa of His 156 is unperturbed at approximately 6.5, as measured from the pH dependence of the 15N- and 1H-NMR spectra of BCX. In contrast, His 149 has a pKa < 2.3, existing in the neutral N epsilon 2H tautomeric state under all conditions examined. BCX unfolds at low pH and 30 degrees C, and thus His 149 is never protonated significantly in the context of the native enzyme. The structural importance of this buried histidine is confirmed by the destablizing effect of substituting a phenylalanine or glutamine at position 149 in BCX.  相似文献   
134.
Suzuki  M. S.  Ovalle  A. R. C.  Pereira  E. A. 《Hydrobiologia》1998,368(1-3):111-122
This study describes the spatial and temporal dynamics of several physical, chemical and biological variables in the Grussai lagoon, and their relationship to ephemeral sand bar openings and to a constant in natura waste water input. The spatial variation in pH, dissolved oxygen, electrical conductivity, total alkalinity and nutrients (e.g. soluble reactive silicate, soluble reactive phosphate and ammonium) was associated to the anoxic and nutrient rich groundwater discharge, the development of aquatic macrophytes, the biological activities of phytoplanktonic community and the marine influence. During the period when the sand bar was closed (isolated), the lagoon water was supersaturated with dissolved oxygen and exhibited high values of pH (8–10), total alkalinity (3.000–5.000 μeq l-1), and chlorophyll a contents (60-300 μg l-1), and had low values of dissolved nutrients (nearly undetectable). These suggest a biological processes dominance. When the sand bar was opened, there was an enrichment with dissolved inorganic nutrients (e.g. ammonium and soluble reactive phosphorus up to 120 and 5 μM, respectively) and a decrease in pH (below 8), total alkalinity (below 3.000 μeq l-1) and dissolved oxygen during the initial second to eight days. Subsequently there was a period when the physical and chemical characteristics of seawater prevailed. The lagoon returned chemical to the pre-opening water conditions in a few days (∼ 10–20). This quick return implies highly efficient biological mechanisms. The high levels of chlorophyll a, total nitrogen and phosphorus in the water column indicate a high eutrophication stage in the Grussai lagoon during the sand bar closed periods. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
135.
Buerkert  A.  Lamers  J. P. A. 《Plant and Soil》1999,215(2):239-253
It is well known that surface mulched crop residues (CR) lead to large yield increases of pearl millet (Pennisetum glaucum L.) on acid sandy soils of the West African Sahel. This effect is generally attributed to mulch-induced changes in chemical properties of the surface soil and the protection of millet seedlings from erosive sand storms. However, previous research has failed to separate the anti-erosive effects of CR on plant growth from chemical effects due to the release of nutrients during CR decomposition. To this end a mulching trial with surface applied millet stalks at a rate of 2000 kg ha-1, an equivalent 10% surface coverage obtained by inert polyethylene (PE) tubes and a bare control treatment was conducted from 1992 to 1994 on an acid sandy soil in southwest Niger. Across treatments, sand flux at 0.1 m height was more than twice as high in the rainy seasons than in the dry months and mulching reduced sand flux by between 25 and 50% during rainy season storms compared with 67% during the dry season. Over the 21 months measurement period, cumulative erosion by wind and water was almost 270 t ha-1 of soil in unmulched control plots. In mulched plots, in contrast, between 160 and 200 t ha-1 of soil was deposited. Surface soil temperature at 0.01 m depth reached above 40 °C in bare plots but was up to 4 °C lower with CR. Mulch reduced soil penetration resistance at 0–0.02 m and 0–0.05 depth by more than half and decreased runoff leading to higher water contents at flowering and grain filling in the upper 0.3 m soil layers in 1993 and throughout the entire profile in 1994, a year with particularly high rainfall. Both mulch types were similarly effective in increasing final stand density of millet in the first two years between 5 and 23% compared with bare control plots. Relative to the bare control CR mulch effects on total dry matter of millet at harvest increased from 35% in 1992 and 108% in 1993 to 283% in 1994, whereas PE mulch led to respective relative increases in dry matter of only 6, 44 and 13%. In 1992 and 1993, CR mulch increased total nutrient uptake of millet at harvest by between 34 and 86% for nitrogen (N), between 31 and 162% for P and between 56 and 126% for potassium (K). These differences were mostly the result of differences in total dry matter and only to a smaller part due to changed nutrient concentrations in plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
136.
137.
传统江南水网空间是一种典型的社会—生态系统,人文社会系统和自然生态系统之间的良性互动对于其韧性构建有着重要的积极作用。基于柯林斯等人提出的压力—冲击动态(PPD)模型,以平江府为典型代表,研究传统江南水网空间如何通过生态系统服务的桥梁搭建水网物质空间与人类社区发展之间的联系,从而厘清社会—生态系统在此过程中如何培育、优化和提升江南水网空间韧性。在此基础上,创新性地从生态系统服务供需关系的角度提出社会—生态韧性构建的生态智慧,并倡导以恢复力、适应力与变革力韧性机制培育为导向的、江南地区构建现代社区实践的若干启示,旨在引导江南水网空间实现具有韧性的社会—生态系统转型发展。  相似文献   
138.
Plant water relations, xylem anatomy and the hydraulic architecture of 1‐year‐old twigs of Spartium junceum, both healthy and affected by a phytoplasm disease, were studied. The disease causes twigs to be either shortened (witches broom disease, WBD) or flat (fasciate disease, FD). WBD twigs show a sevenfold increase in total leaf area, smaller and shorter xylem conduits, a higher stomatal conductance (gl) and a decline of minimum leaf water potentials ( Ψ l) below the turgor loss point. FD twigs had nearly twice the leaf area of the healthy controls as well as high gl values and Ψ l values below the turgor loss point. Moreover, significant differences between healthy and affected twigs in stem stomatal conductance (gs) and in the total stem area were recorded. Affected twigs die back under drought stress, which is explained by a pronounced loss of hydraulic conductivity of the infected stems (40 and 60%) in FD and WBD as well as by the unfavourable ratio of weighted conduit radius ( Σ r4) to total surface area (At), so that the efficiency of the stem in supplying the whole transpiring area with water is strongly reduced.  相似文献   
139.
《Chirality》2017,29(7):348-357
Imazethapyr (IM) is a chiral herbicide composed of an (−)‐R‐enantiomer and an (+)‐S‐enantiomer with differential herbicidal activity. In this study, the effects of microbial organisms, humidity, and temperature on the selective degradation of the (−)‐R‐ and (+)‐S‐enantiomers of IM were determined in silty loam (SL) and clay loam (CL) soil with different pH values. The (−)‐R‐enantiomer of IM was preferentially degraded in two soils under different microorganism, humidity, and temperature conditions. The average half‐lives of R‐IM ranged from 43 to 66.1 days and were significantly shorter (P <  0.05) than those of S‐IM, which ranged from 51.4 to 79.8 days. The enantiomer fraction (EF = (+)‐S‐enantiomer/((−)‐R‐enantiomer + (+)‐S‐enantiomer)) values were used to describe the enantioselectivity of degradation of IM were >0.5 (P <  0.05) in two unsterilized soils under different humidity and temperature conditions. The highest EF values were observed at unsterilized CL soil samples under 50% maximum water‐holding capacity (MWHC) and 25 °C environmental conditions. The EF values of the IM enantiomers were significantly higher (P <  0.05) in CL soils (higher pH = 5.81) and were 0.581 (unsterilized) and 0.575 (50% MWHC; 25 °C) compared with those recorded in SL soil (lower pH = 4.85). In addition, this study revealed that microbial organisms preferentially utilized the more herbicidal active IM enantiomer.  相似文献   
140.
Oxidative stress (OS) and reactive oxygen species (ROS) play a modulatory role in synaptic plasticity and signaling pathways. Mitochondria (MT), a major source of ROS because of their involvement in energy metabolism, are important for brain function. MT‐generated ROS are proposed to be responsible for a significant proportion of OS and are associated with developmental abnormalities and aspects of cellular aging. The role of ROS and MT function in cognition of healthy individuals is relatively understudied. In this study, we characterized behavioral and cognitive performance of 5‐ to 6‐month‐old mice over‐expressing mitochondrial catalase (MCAT). MCAT mice showed enhancements in hippocampus‐dependent spatial learning and memory in the water maze and contextual fear conditioning, and reduced measures of anxiety in the elevated zero maze. Catalase activity was elevated in MCAT mice in all brain regions examined. Measures of oxidative stress (glutathione, protein carbonyl content, lipid peroxidation, and 8‐hydroxyguanine) did not significantly differ between the groups. The lack of differences in these markers of oxidative stress suggests that the differences observed in this study may be due to altered redox signaling. Catalase over‐expression might be sufficient to enhance cognition and reduce measures of anxiety even in the absence of alteration in levels of OS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号