首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35487篇
  免费   2257篇
  国内免费   1467篇
  39211篇
  2024年   94篇
  2023年   600篇
  2022年   803篇
  2021年   1014篇
  2020年   1101篇
  2019年   1476篇
  2018年   1288篇
  2017年   935篇
  2016年   960篇
  2015年   1022篇
  2014年   1845篇
  2013年   2303篇
  2012年   1420篇
  2011年   1830篇
  2010年   2133篇
  2009年   1591篇
  2008年   1579篇
  2007年   1762篇
  2006年   1533篇
  2005年   1563篇
  2004年   1555篇
  2003年   1231篇
  2002年   939篇
  2001年   760篇
  2000年   588篇
  1999年   655篇
  1998年   563篇
  1997年   515篇
  1996年   522篇
  1995年   547篇
  1994年   513篇
  1993年   477篇
  1992年   440篇
  1991年   386篇
  1990年   309篇
  1989年   291篇
  1988年   280篇
  1987年   218篇
  1986年   225篇
  1985年   197篇
  1984年   214篇
  1983年   109篇
  1982年   175篇
  1981年   147篇
  1980年   132篇
  1979年   92篇
  1978年   71篇
  1977年   66篇
  1976年   58篇
  1972年   23篇
排序方式: 共有10000条查询结果,搜索用时 12 毫秒
521.
Summary Differentiated neuroblastoma cells exhibit both the delayed rectifier potassium current (I K) and the M-current (I M). The present study was designed to determine the roles of protein kinase C (PKC) and of the calmodulin-binding protein 80K/MARCKS, a prominent substrate for PKC and possible regulator of these currents. Neuroblastoma x glioma (NG108-15) hybrid cells transfected with m1 muscarinic receptors were grown with 1% fetal bovine serum (FBS) without the prostaglandin E1 (PGE1) and isobutylmethylxanthine (IBMX) usually added in preparation for electrophysiological studies. Under these conditions, the usual pleomorphism was largely abolished, leaving two populations of small cells with stellate and spherically symmetrical geometries. Whole-cell patch clamping indicated that the two cell types had identical electrophysiological properties, displaying: I k, a small current through a T-like Ca2+ channel, and no M-current.Stimulation with carbachol shifted the distribution of cells to a more stellate morphology within 24 hr and later (after 48 hr) reduced the PKC substrate 80K/MARCKS by 22±7%. In contrast to the stimulation of I k observed with cardiac cells, PKC activation produced only a small inhibition of I k, which was independent of carbachol pretreatment. Thus, PKC and 80K/MARCKS can be dissociated from the regulation of I k in neuroblastoma cells.Supported in part by research grants from the National Institutes of Health (DK-40145 and EY-08343) and from the U.K. Medical Research Council.We thank Dr. Peter J. Parker for his generous gift of PKC, and Yvonne Vallis for her skillful assistance with the cultures and harvesting of the NG108-15 transfected cells.  相似文献   
522.
523.
Abstract: Calcium/calmodulin-stimulated protein kinase II (CaMPK II). a major kinase in brain, has been established to play an important role in neurotransmitter release and organization of postsynaptic receptors, and it is known to be involved in long-term potentiation and memory. Less is known about the function of this enzyme in nonneural cells. Here we report on the production, presence, and phosphorylation of the α-subunit of CaM-PK II in primary cultures of cerebral endothelial cells. These results raise the possibility that α-CaM-PK II can act as one of the key enzymes of calcium-mediated intracellular signaling in the cerebral endothelial cells and suggest that α-CaM-PK II may participate in such basic cellular processes as permeability in physiological and pathological conditions.  相似文献   
524.
Abstract: The involvement of B-50, protein kinase C (PKC), and PKC-mediated B-50 phosphorylation in the mechanism of Ca2+-induced noradrenaline (NA) release was studied in highly purified rat cerebrocortical synaptosomes permeated with streptolysin-O. Under optimal permeation conditions, 12% of the total NA content (8.9 pmol of NA/mg of synaptosomal protein) was released in a largely (>60%) ATP-dependent manner as a result of an elevation of the free Ca2+ concentration from 10?8 to 10?5M Ca2+ The Ca2+ sensitivity in the micromolar range is identical for [3H]NA and endogenous NA release, indicating that Ca2+-induced [3H]NA release originates from vesicular pools in noradrenergic synaptosomes. Ca2+-induced NA release was inhibited by either N- or C-terminal-directed anti-B-50 antibodies, confirming a role of B-50 in the process of exocytosis. In addition, both anti-B-50 antibodies inhibited PKC-mediated B-50 phosphorylation with a similar difference in inhibitory potency as observed for NA release. However, in a number of experiments, evidence was obtained challenging a direct role of PKC and PKC-mediated B-50 phosphorylation in Ca2+-induced NA release. PKC pseudosubstrate PKC19-36, which inhibited B-50 phosphorylation (IC50 value, 10?5M), failed to inhibit Ca2+-induced NA release, even when added before the Ca2+ trigger. Similar results were obtained with PKC inhibitor H-7, whereas polymyxin B inhibited B-50 phosphorylation as well as Ca2+-induced NA release. Concerning the Ca2+ sensitivity, we demonstrate that PKC-mediated B-50 phosphorylation is initiated at a slightly higher Ca2+ concentration than NA release. Moreover, phorbol ester-induced PKC down-regulation was not paralleled by a decrease in Ca2+-induced NA release from streptolysin-O-permeated synaptosomes. Finally, the Ca2+- and phorbol ester-induced NA release was found to be additive, suggesting that they stimulate release through different mechanisms. In summary, we show that B-50 is involved in Ca2+-induced NA release from streptolysin-O-permeated synaptosomes. Evidence is presented challenging a role of PKC-mediated B-50 phosphorylation in the mechanism of NA exocytosis after Ca2+ influx. An involvement of PKC or PKC-mediated B-50 phosphorylation before the Ca2+ trigger is not ruled out. We suggest that the degree of B-50 phosphorylation, rather than its phosphorylation after PKC activation itself, is important in the molecular cascade after the Ca2+ influx resulting in exocytosis of NA.  相似文献   
525.
In the polytene nuclei of germ-line cells (ovarian pseudonurse cells) of Drosophila melanogaster females mutant for otu 11 (ovarian tumor), the pericentric heterochromatin is much more abundant than in somatic salivary gland cells. This is due to the degree of heterochromatin compaction (and consequently the level of underreplication) being lower in the nurse cells than in the salivary gland cells. The lower level of compaction probably results in a very low degree of position effect gene inactivation in the ovarian nurse cells.  相似文献   
526.
Substantial quantities of mRNA encoding the abundant Em polypeptide accumulate, in planta, in developing embryos of maize (Zea mays L.). By contrast, accumulation of Em mRNA is only barely detectable in embryos with the vp-5/vp-5 genotype [an abscisic acid (ABA)-deficient viviparous phenotype]. Em mRNA is not detectable within viviparous embryos of the vp-1/vp-1 genotype that are non-responsive to ABA. Culture of immature wild-type and vp-5/vp-5 embryos in the presence of exogenous ABA or of an osmotically active agent prevents precocious germination and results in expression of the Em genes. When vp-1/vp-1 embryos are cultured under similar conditions, only the application of osmotic stress prevents precocious germination. However, Em mRNA does not accumulate either in ABA-treated or stressed, arrested embryos, indicating a requirement for ABA perception through a VP-1-mediated mechanism for Em gene expression. Nevertheless, vp-1/vp-1 embryos do show both ABA and stress responses at the molecular level. Treatment with ABA causes the accumulation of mRNA encoding a polypeptide of approx. 30 kDa, whilst osmotic stress induces the accumulation both of a 30-kDa polypeptide and a set of approx. 20-kDa polypeptides. This indicates the existence of discrete, parallel ABA and stress response pathways in developing maize embryos.Abbreviations ABA abscisic acid - cDNA copy-DNA - DAP days after pollination - kDa kilodaltons - MS Murashige and Skoog medium - LEA late embryogenesis abundant - NEpHGE non-equilibrium pH gradient gel electrophoresis - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis  相似文献   
527.
When fenugreek (Trigonella foenum-graecum L.) endosperms plus testa (endosperms), which had been isolated from 5-h-imbibed seeds, were incubated for at least 2 h under germination conditions, they leaked substances which, like exogenous abscisic acid (ABA), inhibited the production of fenugreek endosperm -galactosidase. However, unlike ABA, 8 h treatment with these inhibitors had no effect on fenugreek endosperms which had been isolated from 15-h-imbibed seeds and leached for 2 h. This indicated that either their inhibitory action was on processes which were related to the production of -galactosidase and had been completed by this time, or that there might be factors present which inactivate these inhibitors. It was also concluded that the action of the endosperm leachate could not be attributed to the presence of ABA. The activity of the leachate decreased when it originated from endosperms imbibed for periods longer than 25 h and thin-layer chromatography (TLC) of extracts from these endosperms showed decreased contents of the leachable inhibitors as imbibition proceeded. From the seed leachate, which had a TLC pattern and inhibitory action similar to that of the endosperm, were isolated three substances which, when applied to endosperms, inhibited the production of -galactosidase activity. According to their chromatographic behaviour and their reaction with specific reagents, there are strong indications that these substances are saponins. These diffusible saponin-like substances were located in both endosperm and perisperm and their physiological role is discussed.Abbreviations ABA abscisic acid - PEG polyethylenglycol - TLC thin-layer chromatography We wish to thank the Alexander S. Onasis Public Benefit Foundation for a grant to K.Z. and Dr. J.S.G. Reid (University of Stirling, Scotland) for a kind gift of fenugreek seeds.  相似文献   
528.
Polyclonal antiserum raised against the native PG1 isoform of tomato fruit (Lycopersicon esculentum Mill.) polygalacturonase [poly(1,4--d-galacturonide) glycanohydrolase, EC 3.2.1.15] bound to each of the subunits of the protein and also to a range of other fruit proteins. Affinity purification was used to remove antibody molecules that bound to the native form of the PG2 isoform. The resulting serum bound to native PG1, denatured PG2 and -subunits of PG1 but not to native PG2 or other fruit proteins. This anti-PG1 serum was used to monitor the occurrence of the PG1 -subunit and PG2 in detergent extracts of tomato tissues. The -subunit polypeptide was detected in pericarp but not locule tissue of fruit, including fruit of the rin and nor mutants. It increased in amount in the pericarp tissues from an early stage to the mature green stage, clearly prior to any appreciable accumulation of the PG2 subunit. The -subunit polypeptide was not detected in stem or leaf tissues. A PG2-specific antiserum was used to study the interaction of PG2 with the isolated -subunit. The PG2 isoform was bound to the -subunit over a wide range of salt concentrations and pH; the interaction was independent of the presence of reducing agents. It is concluded that strong non-covalent forces are involved in the interaction. The results are consistent with a model in which the -subunit is positioned in the cell wall structure and provides a specific binding site for the active PG2 subunit when this is synthesised during ripening.Abbreviations B breaker - MG mature green - Mr relative molecular mass - nor non-ripening mutant - PAGE polyacrylamide gel electrophoresis - PG polygalacturonase - rin ripening inhibitor mutant - SDS sodium dodecyl sulphate  相似文献   
529.
We have used a cell-free polysome-based in-vitro mRNA-degradation system to investigate the halflives of plant cell mRNAs. In order to establish the fidelity of the in-vitro system, we used cordycepin to determine the in-vivo half-lives of -tubulin and actin mRNAs in the primary leaves of 4-d-old etiolated oat (Avena sativa L.) seedlings. The in-vitro rank order of half-lives for phytochrome A (45 min), -tubulin (105 min), and actin (220 min) mRNAs mimicked the in-vivo rank order. A pulse of red light given to excised etiolated primary leaves caused an in-vivo reduction in the half-life of -tubulin mRNA. The selectivity of the polysome-based system was further demonstrated by the decrease in the half-life of -tubulin mRNA (from 105 min to 60 min) induced by a pulse of red light given to the etiolated oat seedlings prior to isolation of polysomes. Red light did not affect the apparent half-lives of phytochrome A or actin mRNAs.Abbreviations cab gene for chlorophyll-a/b-binding protein - kb(p) kilobase (pair) - phyA gene for type-I phytochrome protein - rbcS gene for ribulose-1,5-bisphosphate-carboxylase small-subunit We thank Dr. Richard B. Meagher for the pSAc3 actin clone. We thank Dr. Cecil Stewart for the use of his density-gradient fractionator, and Dr. Virginia Crane for instruction in using the fractionator. We also appreciate the helpful comments provided by the other members of the laboratory during the course of this research: Dr. Isaac John, Dr. Iffat Rahim, Linda Barnes, Bruce Held, David Higgs, and Theresa Tirimanne. This work was supported by USDA grants CRGO 88-37261-4196 and 91-37304-6397, and the Iowa State University Biotechnology Program.  相似文献   
530.
A -galactosidase (EC 3.2.1.23) capable of degrading a number of fruit cell-wall polysaccharides in vitro, was isolated from ripening kiwifruit (Actinidia deliciosa [A. Chev.] C.F. Liang et A.R. Ferguson cv. Hayward). The enzyme has a molecular weight of approximately 60 kDa by gel permeation and consists of several basic isoforms. Several polypeptides were enriched during purification, with 33-, 46- and 67-kDa bands being predominant after sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The optimum activity of the enzyme against p-nitrophenyl--d-galactopyranoside was at pH 3.2, but against a galactan purified from kiwifruit cell walls, it was at pH 4.9. The enzyme was specific for galactosyl residues in the -configuration, releasing galactose from a variety of kiwifruit cell-wall polysaccharide fractions including cell wall material, Na2CO3-soluble pectin, high-molecular-weight galactan, xyloglucan, and galactoglucomannan. A galactosylated glucuronomannan found throughout the kiwifruit plant was also a substrate for the enzyme. The results indicate that the enzyme attacks the non-reducing end of galactose side chains, cleaving single galactose residues which may be attached to the 2, 3, 4, or 6 position of the aglycone. Activity of the enzyme in-vitro was too low to account for the total loss of galactose from the cell walls during ripening. If the -galactosidase of this study is solely responsible for the removal of galactose from the cell wall during ripening then its in-vivo activity must be much greater than that observed in-vitro.Abbreviations CWM cell wall material - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis We thank Bronwyn Culling and Teresa Wegrzyn for assistance and acknowledge a contribution towards the cost of the research from the New Zealand Kiwifruit Marketing Board.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号