首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35396篇
  免费   2249篇
  国内免费   1467篇
  2024年   65篇
  2023年   583篇
  2022年   751篇
  2021年   1014篇
  2020年   1100篇
  2019年   1476篇
  2018年   1288篇
  2017年   935篇
  2016年   960篇
  2015年   1022篇
  2014年   1845篇
  2013年   2303篇
  2012年   1420篇
  2011年   1830篇
  2010年   2133篇
  2009年   1591篇
  2008年   1579篇
  2007年   1762篇
  2006年   1533篇
  2005年   1563篇
  2004年   1555篇
  2003年   1231篇
  2002年   939篇
  2001年   760篇
  2000年   588篇
  1999年   655篇
  1998年   563篇
  1997年   515篇
  1996年   522篇
  1995年   547篇
  1994年   513篇
  1993年   477篇
  1992年   440篇
  1991年   386篇
  1990年   309篇
  1989年   291篇
  1988年   280篇
  1987年   218篇
  1986年   225篇
  1985年   197篇
  1984年   214篇
  1983年   109篇
  1982年   175篇
  1981年   147篇
  1980年   132篇
  1979年   92篇
  1978年   71篇
  1977年   66篇
  1976年   58篇
  1972年   23篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
401.
Summary AMP deaminase, the activity that catalyzes the deamination of AMP to form IMP and NH3 has been measured in Dictyostelium discoideum. A new procedure to assay the activity of this enzyme was developed using formycin 5-monophosphate, a fluorescent analog of AMP as the substrate, and ionpaired reverse phase HPLC to separate the reactants and products. Quantitation of the formycin containing compounds was accomplished at 290 nm. At this wavelength adenosine containing compounds were not detected and activity could be monitored in the presence of its activator ATP. The AMP deaminase activity in vegetative cells was 7.4 nmols/min/mg proteins while the activity in cells measured at 2 and 6 hrs after starvation-induced growth-arrest was 376 nmols/min/mg protein... a 51-fold increase. When vegetative cells were treated with hadacidin, a drug that restricts de novo AMP synthesis and pinocytosis, the activity of the AMP deaminase was 511 nmols/min/mg protein... a 70-fold increase compared to that in untreated vegetative cells. Smaller increases were noted following the inhibition of growth with the drugs cerulenin and vinblastine, as well as after the inhibition of de novo GMP synthesis with the drug mycophenolic acid or the partial inhibition of de novo AMP synthesis with analogs of hadacidin, N-hydroxyglycine and N-formylglycine. In addition, when the activity of two other enzymes involved in purine metabolism, namely adenosine kinase and hypoxanthine-guanine phosphoribosyl transferase, was measured in vegetative cells, and the activity of both compared to that measured in starvation and hadacidin induced growth-arrested cells, showed no significant changes. These data suggest that the changes in the activity of the AMP deaminase are in response to nutrient deprivation and further, that as a consequence of the increase in AMP deaminase activity, ammonia will be produced and an increase in pH should follow. The production of ammonia and its effect on development implicates the AMP deaminase in the early differentiation of this organism.  相似文献   
402.
Summary Depletion of the putrescine and spermidine content of Ehrlich ascites tumor cells by -difluoromethylornithine (DFMO) treatment results in at least a 1500-fold increase in the decarboxylated S-adenosylmethionine (deSAM) content. The accumulation of this adenine nucleoside occurs because of the absence of putrescine and spermidine to act as aminopropyl group acceptors in the spermidine and spermine synthase reactions and because of an increase in S-adenosylmethionine decarboxylase activity. The fact that the synthesis of deSAM continues in DFMO-treated cells makes the pathway an adenine trap. This prompted a study of the adenine nucleotide pools. High-performance liquid chromatographic analysis showed that the total adenine nucleotide pool increased, rather than decreased, as a result of DFMO treatment; the major contributors to the increase being ATP and ADP, which increased 2.6 and 1.9 times, respectively. The cellular content of other ribonucleotides increased as well, particularly that of UTP and CTP. When putrescine was added together with DFMO, the increases in cellular ribonucleotide contents were prevented, showing that they were indeed caused by polyamine depletion.  相似文献   
403.
Summary Specific antisera to -melanotropin (-MSH) and corticotropin (ACTH 1-39) were used to obtain immunocytochemical evidence for the differential localization of -MSH and ACTH in the secretory granules of corticotropes of rat anterior pituitary. The specificity of the antisera was established by binding 131I-labeled -MSH and ACTH 1-39 to their respective antisera. Double-labeling immunocytochemistry (for -MSH, ferritin; for ACTH, colloidal gold) was performed. Some secretory granules were labeled with ferritin particles (-MSH), whereas others contained gold particles (ACTH). Only a few granules showed both ACTH and -MSH. In typical corticotropes (stellate in form with a small number of secretory granules aligned along the cell periphery) only some of the secretory granules that were labeled with anti-ACTH serum were also immunoreactive to anti--MSH. In atypical corticotropes (polygonal in shape and containing a large number of secretory granules) almost all of the immunoreactive ACTH secretory granules were also positive to anti--MSH serum. An intermediate type of corticotrope was observed containing a small number of secretory granules, almost all of which were labeled with anti--MSH. Thus, rat anterior pituitary corticotropes may be classified into three types according to the distribution and content of -MSH. The light-microscopic immuncytochemistry provided similar results.  相似文献   
404.
Summary Electron-microscopic autoradiography of rat neurohypophyses treated with [3H] clonidine, an 2-agonist, showed that binding apparently occurred preferentially at the neurosecretory endings and blood vessels rather than on the pituicytes. Since it is known that clonidine has a high affinity for plasma proteins, the distribution over the neurosecretory nerve endings would suggest the existence of presynaptic 2-binding sites on neurosecretory neurones, which could indicate a regulatory function for catecholamines in neurohypophysial hormone release.  相似文献   
405.
Summary A mast-cell activator, compound 48/80, causes proliferation of mesenchymal cells in the mesentery of rats. Its effect on W/W vmice deficient in mast cells was tested to determine whether the proliferation is mediated in the degranulation of mast cells. Incorporation of [3H]thymidine into mesenchymal cells in the mesentery of these mice with or without compound 48/80 was very small compared to their normal litter mates. However, bone marrow transplantation markedly enhanced the effect of compound 48/80, and resulted in an incorporation of [3H]thymidine almost comparable to that observed in normal mice. Our results provide evidence that mesenchymal cell proliferation is caused by a product secreted by mast cells when stimulated by compound 48/80.Supported by a Grant-in-Aid for Scientific Research, No. 366, from the Japanese Ministry of Health and WelfareThe authors are indebted to Drs. Motomu Minamiyama and Yukio Hirata for valuable advices, and to Miss Mitsuko Inoue for technical assistance  相似文献   
406.
Cellulose- and xylan-degrading enzymes of Trichoderma reesei QM 9414 induced by, sophorose, xylobiose, cellulose and xylan were analyzed by isoelectric focusing. The sophorose-induced enzyme system contained two types of endo-1,4--glucanases (EC 3.2.1.4), one specific for cellulose and the other non-specific, hydrolyzing both cellulose and xylan, and exo-1,4--glucanases (cellobiohydrolases I, EC 3.2.1.91), i.e. all types of glucanases that are produced during growth on cellulose. Specific endo-1,4--xylanases (EC 3.2.1.8) present in the cellulose-containing medium were less abundant in the sophorose-induced enzyme system. Xylobiose and xylan induced only specific endo-1,4--xylanases. It is concluded that syntheses of cellulases and -xylanases in T. reesei QM 9414 are under separate control and that the non-specific endo-1,4--glucanases are constituents of the cellulose-degrading enzyme system.  相似文献   
407.
Bacteroides polypragmatus, a mesophilic obligate anaerobe, was shown to simultaneously ferment glucose and cellobiose giving ethanol as a major metabolic end-product. A mixture of higher cellodextrins was also utilized. The bacterium produced a -glucosidase with a pI value of 4.2 and a molecular weight of approximately 100000 daltons. The enzyme was intracellular and functioned optimally at pH 7. The K m values obtained with p-nitrophenyl--d-glucoside and cellobiose as substrates were 0.73 mM and 100 mM, respectively. The enzyme was quite stable at elevated temperatures; in the presence of 10% glycerol (v/v), it had a half-life of 4 h at 55°C. It was also stable during long-term storage at either 4°C or-20°C, provided that 10% (v/v) glycerol was added to preparations maintained at-20°C.Abbreviations HPLC high-performance liquid chromatography - IEF isoelectric focusing - pNPG p-nitrophenyl--d-glucoside NRCC No. 25676  相似文献   
408.
A gene bank of the nutritionally versatile, nitrogen-fixing cyanobacterium Chlorogloeopsis fritschii was constructed in Charon 4A. 2,800 recombinants containing 10–20 kbp C. fritschii DNA fragments were screened by Southern hybridization using probes containing the genes for the large (LSU) and small (SSU) subunits of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) from Anacystis nidulans. A single recombinant plaque (CDG1) containing a 10.9 kbp EcoR1 fragment from C. fritschii hybridized to both the LSU and SSU probes, indicating a possible linkage of these RuBisCO genes in C. fritschii. RuBisCO activity and protein were detected in CDG1 lysates of Escherichia coli. Hybridization was also obtained between C. fritschii DNA and the LSU probe from Chlamydomonas reinhardtii, although no homology was detected using the LSU probe from maize or the SSU probe from pea.Abbreviations RuBisCO d-ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP d-ribulose 1,5-bisphosphate - LSU large subunit of RuBisCO - SSU small subunit of RuBisCO - SDS sodium dodecyl sulphate - DOC deoxycholate  相似文献   
409.
In this study, we investigated the relationship between carbohydrate metabolism and repression of staphylococcus enterotoxin A (SEA) in Staphylococcus aureus 196E and a pleiotrophic mutant derived from strain 196E. The mutant, designated at strain 196E-MA, lacked a functional phosphoenolpyruvate phosphotransferase system (PTS). The mutant produced acid, under aerobic conditions, from only glucose and glycerol. The parent strain contained an active PTS, and aerobically produced acid from a large number of carbohydrates. Prior growth in glucose led to repression of SEA synthesis in the parent strain; addition to the casamino acids enterotoxin production medium (CAS) led to more severe repression of toxin synthesis. The repression was not related to pH decreases produced by glucose metabolism. When S. aureus 196E was grown in the absence of glucose, there was inhibition of toxin production as glucose level was increased in CAS. The inhibition was related to pH decrease and was unlike the repression observed with glucose-grown strain 196E. The inhibition of SEA synthesis in mutant strain 196E-MA was approximately the same in cells grown with or without glucose and was pH related. Repression of SEA synthesis similar to that seen with glucose-grown S. aureus 196E could not be demonstrated in the mutant. In addition, glucose-grown S. aureus 196E neither synthesized -galactosidase nor showed respiratory activity with certain tricarboxylic acid (TCA) cycle compounds. Glucose-grown strain 196E-MA, however, did not show supressed respiration of TCA cycle compounds; -galactosidase was not synthesized because the mutant lacked a functional PTS. Cyclic adenosine-3, 5-monophosphate did not reverse the repression by glucose of SEA or -galactosidase synthesis in glucose-grown S. aureus 196E. An active PTS appears to be necessary to demonstrate glucose (catabolite) repression in S. aureus.Abbreviations SEA staphylococcal enterotoxin A - SEB staphylococcal enterotoxin B - SEC staphylococcal enterotoxin C - PTS phosphoenolpyruvate phosphotransferase system - CAS casamino acids salts medium - TCA tricarboxylic acid cycle  相似文献   
410.
Polymer chains of (13)--d-glucan were dissolved with 1 M NaOH at 4° C from native microfibrillar protoplast nets. The chains associated into microfibrils during NaOH neutralization or dialysis. In contrast to the native microfibrils which are of uniform width individually (10 to 20 nm) and arranged in flat bundles, the microfibrils formed in vitro showed no band formation and consisted of fibrous spindle-shaped subunits of variable width or loose elementary fibrils about 1.7 nm wide. X-ray diagrams of native nets indicated a fairly high crystallinity and were different for wet and dry specimens. They corresponded to those of paramylon. Precipitated glucans produced diagrams different from the former and revealing a lower crystallinity especially with the dry samples.The X-ray pattern, combined with other data, allowed the precipitated microfibrils to be identified as aggregates of molecular strands composed each of three intertwined helical glucan chains. Since these triple helical chains are about 1.7 nm wide the elementary fibrils of this width can represent only single triple-helical strands. These helices have 7 glucose residues per turn and therefore a low symmetry which explains the poor crystallizing properties. The 7 membered helix represents a basic difference with the well crystallized native glucan which is built of highly symmetrical triple helices with 6 glucose residues per turn. Since 61 helical conformation is not formed in vitro at normal temperatures its generation in vivo must be due to the action of synthesizing enzymes at the protoplast membrane. The intertwining of these helices and crystallization of the strands are determined by their symmetry and physical properties of the chains. This characterizes the native microfibrils as products of self-assembly of enzymegenerated 61 helices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号