首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   896篇
  免费   10篇
  国内免费   21篇
  2023年   1篇
  2022年   11篇
  2021年   10篇
  2020年   5篇
  2019年   13篇
  2018年   15篇
  2017年   6篇
  2016年   10篇
  2015年   10篇
  2014年   130篇
  2013年   126篇
  2012年   105篇
  2011年   46篇
  2010年   39篇
  2009年   47篇
  2008年   65篇
  2007年   63篇
  2006年   41篇
  2005年   36篇
  2004年   15篇
  2003年   8篇
  2002年   13篇
  2001年   4篇
  2000年   6篇
  1999年   3篇
  1998年   7篇
  1997年   8篇
  1996年   7篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   32篇
  1984年   10篇
  1983年   4篇
  1982年   6篇
排序方式: 共有927条查询结果,搜索用时 31 毫秒
921.
11 genes involved in lipid metabolism were cloned from liver of yellow catfish Pelteobagrus fulvidraco, including CPT 1A, CPT 1B, PPARα, PPARγ, SREBP-1, G6PD, 6PGD, FAS, acetyl-CoA ACCa, ACCb, and LPL. Phylogenetic analysis further identified these genes, and confirmed the classification and evolutionary status of yellow catfish. mRNA of all eleven genes was present in liver, muscle, mesenteric adipose, ovary and heart, but at varying levels. The present study will facilitate further studies on the regulation of lipid metabolism at the molecular level for the fish species.  相似文献   
922.
The endosymbiotic theory postulates that many genes migrated from endosymbionts to the nuclear genomes of their hosts. Some migrated genes lack presequences directing proteins to mitochondria, and their mitochondrial targeting signals appear to be inscribed in the core coding regions as internal targeting signals (ITSs). ITSs may have evolved after sequence transfer to nuclei or ITSs may have pre-existed before sequence transfer. Here, we report the molecular cloning of a sugar beet gene for ribosomal protein S19 (Rps19; the first letter is capitalized when the gene is a nuclear gene). We show that sugar beet Rps19 (BvRps19) is an ITS-type gene. Based on amino-acid sequence comparison, dicotyledonous rps19s (the first letter is lower-cased when the gene is a mitochondrial gene), such as tobacco rps19 (Ntrps19), resemble an ancestral form of BvRps19. We investigated whether differences in amino-acid sequences between BvRps19 and Ntrps19 were involved in ITS evolution. Analyses of the intracellular localization of chimaeric GFP-fusion proteins that were transiently expressed in Welsh onion cells showed that Ntrps19-gfp was not localized in mitochondria. When several BvRps19-type amino acid substitutions, none of which was seen in any other angiosperm rps19, were introduced into Ntrps19-gfp, the modified Ntrps19-gfp became localized in mitochondria, supporting the notion that an ITS in BvRps19 evolved following sequence transfer to nuclei. Not all of these substitutions were seen in other ITS-type Rps19s, suggesting that the ITSs of Rps19 are diverse.  相似文献   
923.
Type I collagen is the most abundant protein in the human body, produced by folding of two α1(I) polypeptides and one α2(I) polypeptide into the triple helix. A conserved stem-loop structure is found in the 5′ untranslated region of collagen mRNAs, encompassing the translation start codon. We cloned La ribonucleoprotein domain family member 6 (LARP6) as the protein that binds the collagen 5′ stem-loop in a sequence-specific manner. LARP6 has a distinctive bipartite RNA binding domain not found in other members of the La superfamily. LARP6 interacts with the two single-stranded regions of the 5′ stem-loop. The Kd for binding of LARP6 to the 5′ stem-loop is 1.4 nM. LARP6 binds the 5′ stem-loop in both the nucleus and the cytoplasm. In the cytoplasm, LARP6 does not associate with polysomes; however, overexpression of LARP6 blocks ribosomal loading on collagen mRNAs. Knocking down LARP6 by small interfering RNA also decreased polysomal loading of collagen mRNAs, suggesting that it regulates translation. Collagen protein is synthesized at discrete regions of the endoplasmic reticulum. Using collagen-GFP (green fluorescent protein) reporter protein, we could reproduce this focal pattern of synthesis, but only when the reporter was encoded by mRNA with the 5′ stem-loop and in the presence of LARP6. When the reporter was encoded by mRNA without the 5′ stem-loop, or in the absence of LARP6, it accumulated diffusely throughout the endoplasmic reticulum. This indicates that LARP6 activity is needed for focal synthesis of collagen polypeptides. We postulate that the LARP6-dependent mechanism increases local concentration of collagen polypeptides for more efficient folding of the collagen heterotrimer.  相似文献   
924.
925.
The release of the complete genome sequence of the yeast Saccharomyces cerevisiae has ushered in a new phase of genome research in which sequence function will be assigned. The goal is to determine the biological function of each of the >6,000 open reading frames in the yeast genome. Innovative approaches have been developed that exploit the sequence data and yield information about gene expression levels, protein levels, subcellular localization and gene function for the entire genome.  相似文献   
926.
It is widely accepted that birds are rooted within theropod dinosaurs. However, there is controversy between palaeontological and developmental data regarding manual digit identities of birds and their tetanuran ancestors (I, II and III vs. II, III and IV). To resolve this conflict, the principle of a frame‐shift has been considered. Identities of digits I–III would develop on condensations 2–4. Nevertheless, the discovery of the basal Ceratosauria Limusaurus inextricabilis has been used as a reference to define the digital identity of Tetanurae as II–IV. The new concept of evolutionary teratology states that certain anatomical structures identified in evolutionary lineages are viable developmental anomalies (‘adaptive’ or not), becoming part of the considered groups. The features of Limusaurus' forelimb match teratological characterization. This diagnosis, associated with the variations previously identified in derived Ceratosauria taxa (Carnotaurinae), underline an anatomical and developmental independence (regarding evolutionary conserved mechanisms) compared with Tetanurae and therefore birds. Consequently, Limusaurus should not be used as a reference concerning the identity of avian manuals digits. Evolutionary teratology supports identities I, II and III of the tetanuran manus via a frame‐shift that did not occur in the Ceratosauria lineage. © 2016 The Linnean Society of London  相似文献   
927.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号