首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   31篇
  国内免费   4篇
  2023年   1篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   8篇
  2018年   9篇
  2017年   11篇
  2016年   9篇
  2015年   15篇
  2014年   23篇
  2013年   16篇
  2012年   16篇
  2011年   7篇
  2010年   10篇
  2009年   12篇
  2008年   16篇
  2007年   12篇
  2006年   10篇
  2005年   15篇
  2004年   5篇
  2003年   12篇
  2002年   6篇
  2001年   7篇
  2000年   7篇
  1999年   5篇
  1998年   7篇
  1997年   2篇
  1996年   10篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1980年   1篇
  1979年   3篇
排序方式: 共有305条查询结果,搜索用时 46 毫秒
61.
When newly created habitats are initially colonized by genotypes with rapid population growth rates, later arriving colonists may be prevented from establishing. Although these priority effects have been documented in multiple systems, their duration may be influenced by the diversity of the founding population. We conducted a large‐scale field manipulation to investigate how initial clonal diversity influences temporal and landscape patterns of genetic structure in a developing metapopulation. Six genotypes of obligately asexual Daphnia pulex were stocked alone (no clonal diversity) or in combination (‘high’ clonal diversity) into newly created experimental woodland ponds. We also measured the population growth rate of all clones in the laboratory when raised on higher‐quality and lower‐quality resources. Our predictions were that in the 3 years following stocking, clonally diverse populations would be more likely to persist than nonclonally diverse populations and exhibit evidence for persistent founder effects. We expected that faster growing clones would be found in more pools and comprise a greater proportion of individuals genotyped from the landscape. Genetic composition, both locally and regionally, changed significantly following stocking. Six of 27 populations exhibited evidence for persistent founder effects, and populations stocked with ‘high’ clonal diversity were more likely to exhibit these effects than nonclonally diverse populations. Performance in the laboratory was not predictive of clonal persistence or overall dominance in the field. Hence, we conclude that although laboratory estimates of fitness did not fully explain metapopulation genetic structure, initial clonal diversity did enhance D. pulex population establishment and persistence in this system.  相似文献   
62.
One of the most prominent manifestations of the ongoing climate warming is the retreat of glaciers and ice sheets around the world. Retreating glaciers result in the formation of new ponds and lakes, which are available for colonization. The gradual appearance of these new habitat patches allows us to determine to what extent the composition of asexual Daphnia (water flea) populations is affected by environmental drivers vs. dispersal limitation. Here, we used a landscape genetics approach to assess the processes structuring the clonal composition of species in the D. pulex species complex that have colonized periglacial habitats created by ice‐sheet retreat in western Greenland. We analysed 61 populations from a young (<50 years) and an old cluster (>150 years) of lakes and ponds. We identified 42 asexual clones that varied widely in spatial distribution. Beta‐diversity was higher among older than among younger systems. Lineage sorting by the environment explained 14% of the variation in clonal composition whereas the pure effect of geographical distance was very small and statistically insignificant ( = 0.010, P = 0.085). Dispersal limitation did not seem important, even among young habitat patches. The observation of several tens of clones colonizing the area combined with environmentally driven clonal composition of populations illustrates that population assembly of asexual species in the Arctic is structured by environmental gradients reflecting differences in the ecology of clones.  相似文献   
63.
64.
A review of the captive history and status ofVarecia is presented followed by specific management recommendations for bothVarecia v. variegata andVarecia v. rubra. The total living captive population for the nominate form numbers 398 animals while that for the red and black form numbers 148 individuals as of 31 December 1986.Varecia v. variegata is reported to be a rapidly growing population originating from a founder population (wildborn animals which have produced offspring) of 21 animals. Management direction for this subspecies includes equalization of founder representation and controlled reproduction.Varecia v. rubra is reported to be more highly inbred with 79.35% of the captive population originating from 3 of 8 founders. The management imperatives for this subspecies include: 1) acquisition of a small number of wildborn red ruffed lemurs to be infused into the captive population over an extended period of time; 2) increase population; 3) equalize founder representation; 4) locate space. Encouragement ofin situ research and conservation activities is strongly advocated. Formerly: International Ruffed Lemur Studbook Keeper San Diego Zoo Box 551, San Diego, California 92112  相似文献   
65.
A population’s neutral genetic variation is a composite of its size, degree of isolation and demographic history. Bottlenecks and founder events increase genetic drift, leading to the loss of genetic variation and increased genetic differentiation among populations. Gene flow has the opposite effects. Thus, gene flow can override the genetic patterns caused by founder events. Using 37 microsatellite loci, we investigated the effects of serial bottlenecks on genetic variation and differentiation among 42 Alpine ibex populations in Switzerland with known re‐introduction histories. We detected a strong footprint of re‐introduction events on contemporary genetic structure, with re‐introduction history explaining a substantial part of the genetic differentiation among populations. As a result of the translocation of a considerable number of individuals from the sole formerly surviving population in northern Italy, most of the genetic variation of the ancestral population is now present in the combined re‐introduced Swiss populations. However, re‐introductions split up the genetic variation among populations, such that each contemporary Swiss population showed lower genetic variation than the ancestral population. As expected, serial bottlenecks had different effects on the expected heterozygosity (He) and standardized number of alleles (sNa). While loss of sNa was higher in the first bottlenecks than in subsequent ones, He declined to a similar degree with each bottleneck. Thus, genetic drift was detected with each bottleneck, even when no loss of sNa was observed. Overall, more than a hundred years after the beginning of this successful re‐introduction programme, re‐introduction history was the main determinant of today’s genetic structure.  相似文献   
66.
67.
68.
Aquaculture finfish production based on floating cage technology has raised increasing concerns regarding the genetic integrity of natural populations. Accidental mass escapes can induce the loss of genetic diversity in wild populations by increasing genetic drift and inbreeding. Farm escapes probably represent an important issue in the gilthead sea bream (Sparus aurata), which accounted for 76.4% of total escapees recorded in Europe during a 3‐year survey. Here, we investigated patterns of genetic variation in farmed and wild populations of gilthead sea bream from the Western Mediterranean, a region of long gilthead sea bream farming. We focused on the role that genetic drift may play in shaping these patterns. Results based on microsatellite markers matched those observed in previous studies. Farmed populations showed lower levels of genetic diversity than wild populations and were genetically divergent from their wild counterparts. Overall, farmed populations showed the smallest effective population size and increased levels of relatedness compared to wild populations. The small broodstock size coupled with breeding practices that may favour the variance in individual reproductive success probably boosted genetic drift. This factor appeared to be a major driver of the genetic patterns observed in the gilthead sea bream populations analysed in the present study. These results further stress the importance of recommendations aimed at maintaining broodstock sizes as large as possible and equal sex‐ratios among breeders, as well as avoiding unequal contributions among parents.  相似文献   
69.
Lake sturgeon (Acipenser fulvescens) have experienced significant habitat loss, resulting in reduced population sizes. Three artificial reefs were built in the Huron‐Erie corridor in the Great Lakes to replace lost spawning habitat. Genetic data were collected to determine the source and numbers of adult lake sturgeon spawning on the reefs and to determine if the founder effect resulted in reduced genetic diversity. DNA was extracted from larval tail clips and 12 microsatellite loci were amplified. Larval genotypes were then compared to 22 previously studied spawning lake sturgeon populations in the Great Lakes to determine the source of the parental population. The effective number of breeders (Nb) was calculated for each reef cohort. The larval genotypes were then compared to the source population to determine if there were any losses in genetic diversity that are indicative of the founder effect. The St. Clair and Detroit River adult populations were found to be the source parental population for the larvae collected on all three artificial reefs. There were large numbers of contributing adults relative to the number of sampled larvae. There was no significant difference between levels of genetic diversity in the source population and larval samples from the artificial reefs; however, there is some evidence for a genetic bottleneck in the reef populations likely due to the founder effect. Habitat restoration in the Huron‐Erie corridor is likely resulting in increased habitat for the large lake sturgeon population in the system and in maintenance of the population's genetic diversity.  相似文献   
70.
Past geological and climatological processes shape extant biodiversity. In the Hawaiian Islands, these processes have provided the physical environment for a number of extensive adaptive radiations. Yet, single species that occur throughout the islands provide some of the best cases for understanding how species respond to the shifting dynamics of the islands in the context of colonization history and associated demographic and adaptive shifts. Here, we focus on the Hawaiian happy-face spider, a single color-polymorphic species, and use mitochondrial and nuclear allozyme markers to examine (1) how the mosaic formation of the landscape has dictated population structure, and (2) how cycles of expansion and contraction of the habitat matrix have been associated with demographic shifts, including a "quantum shift" in the genetic basis of the color polymorphism. The results show a marked structure among populations consistent with the age progression of the islands. The finding of low genetic diversity at the youngest site coupled with the very high diversity of haplotypes on the slightly older substrates that are highly dissected by recent volcanism suggests that the mosaic structure of the landscape may play an important role in allowing differentiation of the adaptive color polymorphism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号