首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1845篇
  免费   142篇
  国内免费   26篇
  2013篇
  2024年   3篇
  2023年   22篇
  2022年   33篇
  2021年   45篇
  2020年   38篇
  2019年   56篇
  2018年   104篇
  2017年   39篇
  2016年   40篇
  2015年   56篇
  2014年   102篇
  2013年   136篇
  2012年   55篇
  2011年   121篇
  2010年   132篇
  2009年   137篇
  2008年   137篇
  2007年   96篇
  2006年   95篇
  2005年   63篇
  2004年   67篇
  2003年   51篇
  2002年   40篇
  2001年   20篇
  2000年   22篇
  1999年   27篇
  1998年   29篇
  1997年   16篇
  1996年   12篇
  1995年   5篇
  1994年   20篇
  1993年   11篇
  1992年   15篇
  1991年   10篇
  1990年   7篇
  1989年   14篇
  1988年   16篇
  1987年   13篇
  1986年   8篇
  1985年   16篇
  1984年   22篇
  1983年   19篇
  1982年   17篇
  1981年   12篇
  1980年   5篇
  1979年   7篇
  1978年   1篇
  1974年   1篇
排序方式: 共有2013条查询结果,搜索用时 15 毫秒
31.
A kinetic study of the interaction of bivalent and monovalent sugar ligands with a lectin was undertaken with the aid of surface plasmon resonance (SPR) method. The study involved a series of bivalent α-d-mannopyranoside containing sugar ligands, with systematic variation in the distance between the sugar ligands. The detailed kinetic studies showed that bivalent ligands underwent a faster association (k on) and a slower dissociation (k off) of the ligand–lectin complexes, in comparison to the monovalent ligand–lectin complexes. The kinetic constants were complemented further by assessing the thermodynamic parameters with the aid of isothermal titration calorimetry (ITC). The initiation of cross-linking of ligand–lectin interactions emerge from the early stages of the complexation. The dynamic light scattering (DLS) and the transmission electron microscopy (TEM) techniques allowed judging the sizes and morphologies of the complex in the solution and solid states, respectively.  相似文献   
32.
Small-angle neutron scattering (SANS) on the unilamellar vesicle (ULV) populations (diameter 500 and 1,000 Å) in D2O was used to characterize lipid vesicles from dimyristoylphosphatidylcholine (DMPC) at three phases: gel Lβ′, ripple Pβ′ and liquid Lα. Parameters of vesicle populations and internal structure of the DMPC bilayer were characterized on the basis of the separated form factor (SFF) model. Vesicle shape changes from nearly spherical in the Lα phase to elliptical in the Pβ′ and Lβ′ phases. This is true for vesicles prepared via extrusion through pores with the diameter 500 Å. Parameters of the internal bilayer structure (thickness of the membrane and the hydrophobic core, hydration and the surface area of the lipid molecule) were determined on the basis of the hydrophobic–hydrophilic (HH) approximation of neutron scattering length density across the bilayer ρ(x) and of the step function (SF) approximation of ρ(x). DMPC membrane thickness in the Lα phase (T=30°C) demonstrates a dependence on the membrane curvature for extruded vesicles. Prepared via extrusion through 500 Å diameter pores, vesicle population in the Lα phase has the following characteristics: average value of minor semi-axis 266±2 Å, ellipse eccentricity 1.11±0.02, polydispersity 26%, thickness of the membrane 48.9±0.2 Å and of the hydrophobic core 19.9±0.4 Å, surface area 60.7±0.5 Å2 and number of water molecules 12.8±0.3 per DMPC molecule. Vesicles prepared via extrusion through pores with the diameter 1,000 Å have polydispersity of 48% and membrane thickness of 45.5±0.6 Å in the Lα phase. SF approximation was used to describe the DMPC membrane structure in Lβ′ (T=10°C) and Pβ′ (T=20°C) phases. Extruded DMPC vesicles in D2O have membrane thickness of 49.6±0.5 Å in the Lβ′ phase and 48.3±0.6 Å in the Pβ′ phase. The dependence of the DMPC membrane thickness on temperature was restored from the SANS experiment.  相似文献   
33.
Curious low-temperature solubility of cellulose triacetates (CTA; here we use nominally "CTA," but the sample still contains 7% of C-6 position hydroxyls) in an organic solvent, methyl acetate (MA), was studied by a newly designed low-temperature type of DLS apparatus, which enabled for the first time to investigate the structural change of CTA in solution from 45 degrees C down to -100 degrees C. A molecularly dissolved CTA was found to coexist with three types of self-assemblies over all the temperature ranges except for the three specific temperatures T* of 30, -10, and -75 degrees C. However, these multiple self-assemblies are not in real thermodynamic equilibrium but in a metastable state, which could be stabilized effectively by the intermolecular hydrogen bonding (HB) with the help of the dipole interaction at low temperatures. In more detail, with decreasing temperature, these assemblies performed the structural reorganization drastically at three T*'s and would finally be frozen in a physical gel structure at -99 degrees C; around the freezing temperature of MA, CTA molecules could be trapped homogeneously in the frozen MA. The crucial role in such structural reorganizations is played by the balance between the intermolecular HB and the dipole interaction worked in the highly electronegative solvent. Because these interactions, which are mediated by the solvent electronegativity, change drastically with temperature, they result in the control of not only the single CTA chain conformation (= the intramolecular HB) but also the binding ways of the intermolecular HBs between CTA molecules and they induce multitudinous metastable structures in solution. Here it is noted that HB could work mainly between the C-6 position hydroxyls in the anhydroglucose units of CTA and are essentially effective at low temperatures.  相似文献   
34.
Many proteins are composed of several domains that pack together into a complex tertiary structure. Multidomain proteins can be challenging for protein structure modeling, particularly those for which templates can be found for individual domains but not for the entire sequence. In such cases, homology modeling can generate high quality models of the domains but not for the orientations between domains. Small-angle X-ray scattering (SAXS) reports the structural properties of entire proteins and has the potential for guiding homology modeling of multidomain proteins. In this article, we describe a novel multidomain protein assembly modeling method, SAXSDom that integrates experimental knowledge from SAXS with probabilistic Input-Output Hidden Markov model to assemble the structures of individual domains together. Four SAXS-based scoring functions were developed and tested, and the method was evaluated on multidomain proteins from two public datasets. Incorporation of SAXS information improved the accuracy of domain assembly for 40 out of 46 critical assessment of protein structure prediction multidomain protein targets and 45 out of 73 multidomain protein targets from the ab initio domain assembly dataset. The results demonstrate that SAXS data can provide useful information to improve the accuracy of domain-domain assembly. The source code and tool packages are available at https://github.com/jianlin-cheng/SAXSDom .  相似文献   
35.
Exposure of microbial cells to sub-lethal stresses is known to increase cell robustness. In this work, a two-compartment bioreactor in which microbial cells are stochastically exposed to sub-lethal temperature stresses has been used in order to investigate the response of the stress sensitive Bifidobacterium bifidum THT 0101 to downstream processing operations. A stochastic model validated by residence time distribution experiments has shown that in the heat-shock configuration, a two-compartment bioreactor (TCB) allows the exposure of microbial cells to sub-lethal temperature of 42 °C for a duration comprised between 100 and 300 s. This exposure resulted in a significant increase of cell resistance to freeze–drying by comparison with cells cultivated in conventional bioreactors or in the TCB in the cold shock mode (CS-TCB). The mechanism behind this robustness seems to be related with the coating of microbial cells with exopolysaccharide (EPS), as assessed by the change of the zeta potential and the presence of higher EPS concentration after heat shock. Conditioning of Bifidobacteria on the basis of the heat shock technique is interesting from the practical and economical point of view since this strategy can be directly implemented in the bioreactor during stationary phase preceding cell recovery and freeze–drying.  相似文献   
36.
Heat shock protein (Hsp)40s play an essential role in protein metabolism by regulating the polypeptide binding and release cycle of Hsp70. The Hsp40 family is large, and specialized family members direct Hsp70 to perform highly specific tasks. Type I and Type II Hsp40s, such as yeast Ydj1 and Sis1, are homodimers that dictate functions of cytosolic Hsp70, but how they do so is unclear. Type I Hsp40s contain a conserved, centrally located cysteine-rich domain that is replaced by a glycine- and methionine-rich region in Type II Hsp40s, but the mechanism by which these unique domains influence Hsp40 structure and function is unknown. This is the case because high-resolution structures of full-length forms of these Hsp40s have not been solved. To fill this void, we built low-resolution models of the quaternary structure of Ydj1 and Sis1 with information obtained from biophysical measurements of protein shape, small-angle X-ray scattering, and ab initio protein modeling. Low-resolution models were also calculated for the chimeric Hsp40s YSY and SYS, in which the central domains of Ydj1 and Sis1 were exchanged. Similar to their human homologs, Ydj1 and Sis1 each has a unique shape with major structural differences apparently being the orientation of the J domains relative to the long axis of the dimers. Central domain swapping in YSY and SYS correlates with the switched ability of YSY and SYS to perform unique functions of Sis1 and Ydj1, respectively. Models for the mechanism by which the conserved cysteine-rich domain and glycine- and methionine-rich region confer structural and functional specificity to Type I and Type II Hsp40s are discussed.  相似文献   
37.
Youg R. Thaker  Yin H. Yau 《FEBS letters》2009,583(7):1090-1095
Owing to the complex nature of V1VO ATPases, identification of neighboring subunits is essential for mechanistic understanding of this enzyme. Here, we describe the links between the V1 headpiece and the VO-domain of the yeast V1VO ATPase via subunit A and d as well as the VO subunits a and d using surface plasmon resonance and fluorescence correlation spectroscopy. Binding constants of about 60 and 200 nM have been determined for the a-d and d-A assembly, respectively. The data are discussed in light of subunit a and d forming a peripheral stalk, connecting the catalytic A3B3 hexamer with VO.

Structured summary

MINT-7012054: d (uniprotkb:P32366) binds (MI:0407) to A (uniprotkb:P17255) by fluorescence correlation spectroscopy (MI:0052)MINT-7012041: d (uniprotkb:P32366) binds (MI:0407) to A (uniprotkb:P17255) by surface plasmon resonance (MI:0107)MINT-7012028: d (uniprotkb:P32366) binds (MI:0407) to a (uniprotkb:P32563) by surface plasmon resonance (MI:0107)  相似文献   
38.
Swt1 is an RNA endonuclease that plays an important role in quality control of nuclear messenger ribonucleoprotein particles (mRNPs) in eukaryotes; however, its structural details remain to be elucidated. Here, we report the crystal structure of the C-terminal (CT) domain of Swt1 from Saccharomyces cerevisiae, which shares common characteristics of higher eukaryotes and prokaryotes nucleotide binding (HEPN) domain superfamily. To study in detail the full-length protein structure, we analyzed the low-resolution architecture of Swt1 in solution using small angle X-ray scattering (SAXS) method. Both the CT domain and middle domain exhibited a good fit upon superimposing onto the molecular envelope of Swt1. Our study provides the necessary structural information for detailed analysis of the functional role of Swt1, and its importance in the process of nuclear mRNP surveillance.  相似文献   
39.
Silver nanoparticles have been modified with self-assembled monolayers of hydroxyl-terminated long chain thiols and encapsulated with a silica shell. The resulting core–shell nanoparticles were used as optical labels for cell analysis using flow cytometry and microscopy. The excitation of plasmon resonances in nanoparticles results in strong depolarized scattering of visible light, permitting detection at the single nanoparticle level. The nanoparticles were modified with neutravidin via epoxide–azide coupling chemistry, to which biotinylated antibodies targeting cell surface receptors were bound. The nanoparticle labels exhibited long-term stability in solutions with high salt concentrations without aggregation or silver etching. Labeled cells exhibited two orders of magnitude enhancement of the scattering intensity compared with unlabeled cells.  相似文献   
40.
The underwater light field has been studied in a hypertrophic, gravel-pit lake close to Madrid (Spain) during a one year cycle. Both the inherent and the apparent properties of the underwater light field have been weekly surveyed. As theoretically expected, there is a link between inherent and apparent properties in this lake. Evidence is given suggesting that a seasonal trend in the underwater light field seems to occur. The main factor attenuating light in the vertical column is phytoplankton chlorophyll “a” but humic substances also appear to play an importtant role in light attenuation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号