首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4874篇
  免费   23篇
  国内免费   11篇
  2024年   54篇
  2023年   353篇
  2022年   230篇
  2021年   276篇
  2020年   354篇
  2019年   445篇
  2018年   425篇
  2017年   298篇
  2016年   358篇
  2015年   198篇
  2014年   457篇
  2013年   917篇
  2012年   46篇
  2011年   45篇
  2010年   37篇
  2009年   15篇
  2008年   26篇
  2007年   22篇
  2006年   14篇
  2005年   55篇
  2004年   34篇
  2003年   30篇
  2002年   22篇
  2001年   9篇
  2000年   10篇
  1999年   8篇
  1998年   12篇
  1997年   8篇
  1996年   2篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   13篇
  1984年   22篇
  1983年   23篇
  1982年   13篇
  1981年   10篇
  1980年   11篇
  1979年   10篇
  1978年   7篇
  1977年   9篇
  1976年   3篇
  1975年   4篇
  1974年   6篇
  1973年   2篇
排序方式: 共有4908条查询结果,搜索用时 15 毫秒
161.
Among both ecologists and the wider community there is a tacit assumption that predators regulate populations of their prey. But there is evidence from a wide taxonomic and geographic range of studies that predators that are adapted to co-evolved prey generally do not regulate their prey. This is because predators either cannot reproduce as fast as their prey and/or are inefficient hunters unable to catch enough prey to sustain maximum reproduction. The greater capacity of herbivores to breed successfully is, however, normally restricted by a lack of enough food of sufficient quality to support reproduction. But whenever this shortage is alleviated by a large pulse of food, herbivores increase their numbers to outbreak levels. Their predators are unable to contain this increase, but their numbers, too, surge in response to this increase in food. Eventually both their populations will crash once the food supply runs out, first for the herbivores and then for the predators. Then an “over-run” of predators will further depress the already declining prey population, appearing to be controlling its abundance. This latter phenomenon has led many ecologists to conclude that predators are regulating the numbers of their prey. However, it is the same process that is revealed during outbreaks that limits populations of both predator and prey in “normal” times, although this is usually not readily apparent. Nevertheless, as all the diverse cases discussed here attest, the abundance of predators and their co-evolved prey are both limited by their food: the predators are passengers, not drivers.  相似文献   
162.
The renin–angiotensin system (RAS) is a complex network that regulates blood pressure, electrolyte and fluid homeostasis, as well as the function of several organs. Angiotensin-converting enzyme 2 (ACE2) was identified as an enzyme that negatively regulates the RAS by converting Ang II, the main bioactive molecule of the RAS, to Ang 1–7. Thus, ACE2 counteracts the role of angiotensin-converting enzyme (ACE) which generates Ang II from Ang I. ACE and ACE2 have been implicated in several pathologies such as cardiovascular and renal disease or acute lung injury. In addition, ACE2 has functions independent of the RAS: ACE2 is the receptor for the SARS coronavirus and ACE2 is essential for expression of neutral amino acid transporters in the gut. In this context, ACE2 modulates innate immunity and influences the composition of the gut microbiota, which can explain diarrhea and intestinal inflammation observed in Hartnup disorder, Pellagra, or under conditions of severe malnutrition. Here we review and discuss the diverse functions of ACE2 and its relevance to human pathologies.  相似文献   
163.
Prostate cancer (CaP) is the second leading malignancy in men. The role of epithelial cell adhesion molecule (EpCAM), also known as CD326, in CaP progression and therapeutic resistance is still uncertain. Here, we aimed to investigate the roles of EpCAM in CaP metastasis and chemo/radioresistance. Expression of EpCAM in CaP cell lines and human CaP tissues was assessed using immunofluorescence and immunohistochemistry, respectively. EpCAM was knocked down (KD) in PC-3, DU145 and LNCaP-C4-2B cells using small interfering RNA (siRNA), and KD results were confirmed by confocal microscope, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Cell growth was evaluated by proliferation and colony formation assays. The invasive potential was assessed using a matrigel chamber assay. Tumorigenesis potential was measured by a sphere formation assay. Chemo-/radiosensitivity were measured using a colony formation assay. Over-expression of EpCAM was found in primary CaP tissues and lymph node metastases including cancer cells and surrounding stromal cells. KD of EpCAM suppressed CaP proliferation and invasive ability, reduced sphere formation, enhanced chemo-/radiosensitivity, and down-regulated E-cadherin, p-Akt, p-mTOR, p-4EBP1 and p-S6K expression in CaP cells. Our findings suggest that EpCAM plays an important role in CaP proliferation, invasion, metastasis and chemo-/radioresistance associated with the activation of the PI3K/Akt/mTOR signaling pathway and is a novel therapeutic target to sensitize CaP cells to chemo-/radiotherapy.  相似文献   
164.
Guillain–Barré syndrome (GBS) is an immune-mediated acute inflammatory disorder in the peripheral nervous system (PNS) of humans characterized by inflammatory infiltration and damage to myelin and axon. Experimental autoimmune neuritis (EAN) is a useful animal model for GBS. Although GBS and EAN have been widely studied, the pathophysiological basis of GBS/EAN remains largely unknown. Immunocompetent cells together with cytokines produced by various cells contribute to the inflammatory process of EAN by acting as mediators or effectors. Both GBS and EAN have hitherto been attributed to T helper (Th)1 cells-mediated disorders, however, some changes in GBS and EAN could not be explained by the pathogenic role of Th1 cells and a disturbance of the Th1/Th2 balance, which has previously been considered to be important for the homeostatic maintenance of the immune responses and to explain the adaptive immunity and autoimmune diseases. The Th1/Th2 paradigm in autoimmune diseases has been greatly challenged in recent years, with the identification of a particular T cell subset Th17 cells. Studies on the associations between Th17 cells/cytokines and GBS/EAN are reviewed. But some of them occasionally yield conflicting results, indicating an intricate network of cytokines in immune response.  相似文献   
165.
《Biomarkers》2013,18(5):434-444
Damage to DNA by dopamine quinone and/or catechol estrogen quinones may play a significant role in the initiation of Parkinson’s disease (PD). Depurinating estrogen–DNA adducts are shed from cells and excreted in urine. The aim of this study was to discover whether higher levels of estrogen–DNA adducts are associated with PD. Forty estrogen metabolites, conjugates, and DNA adducts were analyzed in urine samples from 20 PD cases and 40 matched controls by using ultra performance liquid chromatography/tandem mass spectrometry. The levels of adducts in cases versus controls (P?<?0.005) suggest that unbalanced estrogen metabolism could play a causal role in the initiation of PD.  相似文献   
166.
Gene–environment interactions have been extensively studied in lung cancer. It is likely that several genetic polymorphisms cooperate in increasing the individual risk. Therefore, the study of gene–gene interactions might be important to identify high-susceptibility subgroups. GSEC is an initiative aimed at collecting available data sets on metabolic polymorphisms and the risks of cancer at several sites and performing pooled analyses of the original data. Authors of published papers have provided original data sets. The present paper refers to gene–gene interactions in lung cancer and considers three polymorphisms in three metabolic genes: CYP1A1, GSTM1 and GSTT1. The present analyses compare the gene–gene interactions of the CYP1A1*2A, GSTM1 and GSTT1 polymorphisms from studies on lung cancer conducted in Europe and the USA between 1991 and 2000. Only Caucasians have been included. The data set includes 1466 cases and 1488 controls. The only clear-cut association was found with CYP1A1*2A. This association remained unchanged after stratification by polymorphisms in other genes (with an odds ratio [OR] of approximately 2.5), except when interaction with GSTM1 was considered. When the OR for CYP1A1*2A was stratified according to the GSTM1 genotype, the OR was increased only among the subjects who had the null (homozygous deletion) GSTM1 genotype (OR=2.8, 95% CI=0.9–8.4). The odds ratio for the interactive term (CYP1A1*2A by GSTM1) in logistic regression was 2.7 (95% CI=0.5–15.3). An association between lung cancer and the homozygous CYP1A1*2A genotype is confirmed. An apparent and biologically plausible interaction is suggested between this genotype and GSTM1.  相似文献   
167.
The α,β-unsaturated carbonyl compound (4S)-(+)-carvone was selectively reduced to (1R,2R,4S)-iso-dihydrocarveol using baker's yeasts. The conversion of the bioreduction reaction was monitored using a green hollow-fiber liquid–liquid–liquid microextraction (HF-LLLME) technique. Several parameters which may affect the bioreduction of (4S)-(+)-carvone, such as temperature, time, substrate/enzyme ratio, pH and buffer concentration, were evaluated. The effect of some additives, such as trehalose, DMSO and the ionic liquid [BMIm][PF6], was also studied. The (1R,2R,4S)-iso-dihydrocarveol was recovered with 52.7% conversion and diastereoisomeric excess >99% after 48 h of reaction at 40 °C in an aqueous monophasic system, with 0.1 mol L?1 buffer concentration (pH 7.5) and a substrate/yeast cell mass ratio of 8.0 mg g?1. The HF-LLLME microextraction technique allowed the optimization of the reaction with a reduction of over 99.5% in relation to the use of organic solvents.  相似文献   
168.
Plant–plant interactions change depending on environmental conditions, shifting from competition to facilitation when the stress is high. In addition to these changes, the relevance of intraspecific compared to interspecific interactions may also shift as abiotic stress does. We inferred intra- and interspecific plant–plant interactions of the cushion plant Hormathophylla spinosa as related to the dominant shrub Juniperus sabina in two sites with contrasting abiotic conditions (a slope with high-stress conditions vs. a valley bottom with milder conditions) in a Mediterranean high mountain. Specifically, we studied the spatial patterns and several variables related to plant performance (plant size and form, non-structural carbohydrate – NSC – concentrations and radial growth) of H. spinosa.The spatial pattern varied depending on site conditions. H. spinosa plants were positively associated with juniper in the high-stress slope site, probably through higher establishment rates due to the amelioration of soil conditions. In contrast, in the milder valley site H. spinosa establishment occurred mostly in open areas. Age structure, inferred from annual rings, reflected a massive establishment event in the whole study area which occurred 30–50 years ago. Canopy variables and radial growth were density dependent: both were negatively affected by the high density of H. spinosa individuals in the valley, but favoured by junipers on the slope. Interestingly, NSCs showed the opposite pattern, suggesting lower investment in growth by H. spinosa plants in the valley than on the slope.Our results reinforce the strong links existing between intra- and interspecific relationships and the need to include both when studying the influence of abiotic conditions on plant–plant interactions. This approach enabled us to detect that the direction and intensity of plant–plant interactions may shift at different ecological levels. Particularly interesting was the finding that optimal sites at the population level may not necessarily be the sites showing maximum individual performance.  相似文献   
169.
Despite intense global efforts, no new clinical and/or viable biomarkers have been established to overcome the limitation of the prostate specific antigen in the early diagnosis and prognosis of prostate cancer (PCa). The current proteomic approaches to PCa biomarker discovery, each have distinct advantages and disadvantages, yet when combined hold real promise in the coming years. One key approach to this effort is the development of non-targeted, depletion-free and quantitative liquid chromatography–ultra high resolution tandem mass spectrometry (LC–MS) pipelines for the systems-wide interrogation of the diverse proteomes encompassed in whole tissue and blood serum or plasma. Derived quantitative proteomes can be decoded for their biomedical relevance with advanced bioinformatics and bibliographic mining to yield promising ‘molecular portraits’ that can gauge prostatic disease at the serological level. Their functional annotation, although potentially useful, is beyond our current level of biological understanding and should not be requisite for their effective use in the clinical monitoring of prostatic disease.  相似文献   
170.
Abstract

Protein degradation is an indispensable process for cells which is often deregulated in various diseases, including malignant conditions. Depending on the specific cell type and functions of expressed proteins, this aberration may have different effects on the determination of malignant phenotypes. A discrete, inherent feature of malignant glioma is its profound invasive and migratory potential, regulated by the expression of signaling and effector proteins, many of which are also subjected to post-translational regulation by the ubiquitin–proteasome system (UPS). Here we provide an overview of this connection, focusing on important pro-invasive protein signals targeted by the UPS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号