首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5035篇
  免费   902篇
  国内免费   1852篇
  2024年   37篇
  2023年   188篇
  2022年   180篇
  2021年   254篇
  2020年   366篇
  2019年   372篇
  2018年   318篇
  2017年   380篇
  2016年   402篇
  2015年   339篇
  2014年   328篇
  2013年   388篇
  2012年   276篇
  2011年   287篇
  2010年   252篇
  2009年   347篇
  2008年   338篇
  2007年   370篇
  2006年   296篇
  2005年   309篇
  2004年   222篇
  2003年   234篇
  2002年   180篇
  2001年   156篇
  2000年   147篇
  1999年   121篇
  1998年   103篇
  1997年   92篇
  1996年   63篇
  1995年   51篇
  1994年   53篇
  1993年   35篇
  1992年   36篇
  1991年   38篇
  1990年   42篇
  1989年   22篇
  1988年   33篇
  1987年   27篇
  1986年   16篇
  1985年   26篇
  1984年   10篇
  1983年   7篇
  1982年   17篇
  1981年   8篇
  1980年   5篇
  1979年   4篇
  1977年   2篇
  1976年   2篇
  1972年   2篇
  1958年   4篇
排序方式: 共有7789条查询结果,搜索用时 171 毫秒
21.
Wastewater treatment facility is vital for sustainable urban development. In the course of removing contaminants and discharging ready-for-reuse water, wastewater treatment consumes resources and triggers environmental emission during its lifetime. A comprehensive framework to analyze the embodied ecological elements as natural resources and environmental emissions of wastewater treatment is presented in this work. The systems method as a combination of process and input–output analyses is applied and a set of indicators are accordingly devised. Two representative ecological elements, i.e., greenhouse gases emissions and solar emergy of alternative wastewater treatment systems, i.e., a traditional activated sludge wastewater treatment plant and a constructed wetland have been taken into consideration. For each ecological element, five indicators have been calculated and compared to assess the impact on climate change and resources utilizing style of the case systems. The framework raised in this paper is fully supportive for optimal decision-making among different wastewater treatment technologies, and could be transplanted to be applied to systems ecological accounting for other production systems.  相似文献   
22.
23.
ABSTRACT Telemetry data have been widely used to quantify wildlife habitat relationships despite the fact that these data are inherently imprecise. All telemetry data have positional error, and failure to account for that error can lead to incorrect predictions of wildlife resource use. Several techniques have been used to account for positional error in wildlife studies. These techniques have been described in the literature, but their ability to accurately characterize wildlife resource use has never been tested. We evaluated the performance of techniques commonly used for incorporating telemetry error into studies of wildlife resource use. Our evaluation was based on imprecise telemetry data (mean telemetry error = 174 m, SD = 130 m) typical of field-based studies. We tested 5 techniques in 10 virtual environments and in one real-world environment for categorical (i.e., habitat types) and continuous (i.e., distances or elevations) rasters. Technique accuracy varied by patch size for the categorical rasters, with higher accuracy as patch size increased. At the smallest patch size (1 ha), the technique that ignores error performed best on categorical data (0.31 and 0.30 accuracy for virtual and real data, respectively); however, as patch size increased the bivariate-weighted technique performed better (0.56 accuracy at patch sizes >31 ha) and achieved complete accuracy (i.e., 1.00 accuracy) at smaller patch sizes (472 ha and 1,522 ha for virtual and real data, respectively) than any other technique. We quantified the accuracy of the continuous covariates using the mean absolute difference (MAD) in covariate value between true and estimated locations. We found that average MAD varied between 104 m (ignore telemetry error) and 140 m (rescale the covariate data) for our continuous covariate surfaces across virtual and real data sets. Techniques that rescale continuous covariate data or use a zonal mean on values within a telemetry error polygon were significantly less accurate than other techniques. Although the technique that ignored telemetry error performed best on categorical rasters with smaller average patch sizes (i.e., ≤31 ha) and on continuous rasters in our study, accuracy was so low that the utility of using point-based approaches for quantifying resource use is questionable when telemetry data are imprecise, particularly for small-patch habitat relationships.  相似文献   
24.
Aim This study aims to document the floristic changes that occurred in Iceland between 15 and 6 Ma and to establish the dispersal mechanisms for the plant taxa encountered. Using changing patterns of dispersal, two factors controlling floristic changes are tested. Possible factors are (1) climate change, and (2) the changing biogeography of Iceland over the time interval studied; that is, the presence or absence of a Miocene North Atlantic Land Bridge. Location The North Atlantic. Methods Species lists of fossil plants from Iceland in the time period 15 to 6 Ma were compiled using published data and new data. Closest living analogues were used to establish dispersal properties for the fossil taxa. Dispersal mechanisms of fossil plants were then used to reconstruct how Iceland was colonized during various periods. Results Miocene floras of Iceland (15–6 Ma) show relatively high floristic turnover from the oldest floras towards the youngest; and few taxa from the oldest floras persist in the younger floras. The frequencies of the various dispersal mechanisms seen in the 15‐Ma floras are quite different from those recorded in the 6‐Ma floras, and there is a gradual change in the prevailing mode of dispersal from short‐distance anemochory and dyschory to long‐distance anemochory. Two mechanisms can be used to explain changing floral composition: (1) climate change, and (2) the interaction between the dispersal mechanisms of plants and the increasing isolation of proto‐Iceland during the Miocene. Main conclusions Dispersal mechanisms can be used to extract palaeogeographic signals from fossil floras. The composition of floras and dispersal mechanisms indicate that Iceland was connected both to Greenland and to Europe in the early Middle Miocene, allowing transcontinental migration. The change in prevalence of dispersal modes from 15 to 6 Ma appears to reflect the break‐up of a land bridge and the increasing isolation of Iceland after 12 Ma. Concurrent gradual cooling and isolation caused changes in species composition. Specifically, the widening of the North Atlantic Ocean prevented taxa with limited dispersal capability from colonizing Iceland, while climate cooling led to the extinction of thermophilous taxa.  相似文献   
25.
When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land‐use and soil management. We review literature that reports changes in soil organic carbon after changes in land‐use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100 g C m?2 y?1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m?2 y?1 and 33.2 g C m?2 y?1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.  相似文献   
26.
Summary Different response patterns in net photosynthesis (A) leaf conductance (g) and water use efficiency (WUE= a/transpiration) in three subalpine plants occurred during experimental sun/shade transitions that simulated natural cloudcover. In Frasera speciosa Dougl., a large-leaved herb characteristic of open sites, g was relatively insensitive to transitions in irradiance and variations in A. However, large decreases in leaf temperature resulted in reduced transpiration during shade intervals and relatively constant WUE throughout the experimental sun/shade regime. In the understory herb, Arnica cordifolia Hook., patterns of A and g were similar during sun/shade transitions, but WUE was substantially reduced compared to steady-state levels. A third, somewhat intermediate pattern of A, g, and WUE was found in Artemisia tridentata L., an open site shrub. Higher intercellular CO2 values in A. tridentata suggested that internal, cellular limitations to A were high relative to stomatal limitations in this shrub when compared to the herbaceous species.  相似文献   
27.
C. Amoros  C. Jacquet 《Hydrobiologia》1987,145(1):333-341
Methodological investigations, using remains of Bosminidae and Chydoridae, were undertaken to study the development of ecosystems in former river channels. Four biotopes from two former channels of different ages were used in this work. The Copepoda and Cladocera populations characterized each of the 11 sampling stations in relation to ecological factors, which are linked to the development stage in each ecosystem. Analysis of only the Bosminidae and Chydoridae populations presented practically the same information as an analysis of the total populations of Copepoda and Cladocera. The distribution of Bosminidae and Chydoridae remains taken from the surficial sediments at the deepest point of each former channel strongly resembled the distribution of the living populations sampled at several stations during one full year. Therefore, Bosminidae and Chydoridae remains could provide us with pertinent information concerning each phase of ecological succession that occurs in abandoned river channels.  相似文献   
28.
The distribution of dens and den use by the red fox was studied in Kumamoto Prefecture between 1968 and 1982. A total of 80 dens were classified into natal, residential, and temporarily-visited dens. Natal dens comprised 12.4% of all dens. Relative proportions were quite stable for a long period. This indicates a constant number of reproducing females in the area for a considerable length of time. Seasonally the utilization of den showed three peaks in February, May and October. The peaks coincided well with the peaks of reproductive activity of female foxes. The results of multiple regression analysis of distribution of dens with respect to selected environmental parameters around densites indicated that the fox selectively utilize open land, rather than densely vegetated areas. The persistence of dens, the selective utilization by foxes of open land and the sizes of dens were all related to the breeding activities of female foxes inhabiting the area. Reproductive females usually used plural dens (“den group”) in one reproductive season. The numbers of those females occuring in the area were maintained at a steady level for fairy long periods. These indicate that the existence of a stable social relationship between females mediated through occupancy of “den groups.”  相似文献   
29.
Summary Measurements were made of the photosynthetic gas exchange properties and water use efficiency of 19 species of mangrove in 9 estuaries with different salinity and climatic regimes in north eastern Australia and Papua New Guinea. Stomatal conductance and CO2 assimilation rates differed significantly between species at the same locality, with the salt-secreting species, Avicennia marina, consistently having the highest CO2 assimilation rates and stomatal conductances. Proportional changes in stomatal conductance and CO2 assimilation rate resulted in constant and similar intercellular CO2 concentrations for leaves exposed to photon flux densities above 800 mol·m-2·s-1 in all species at a particular locality. In consequence, all species at the same locality had similar water use efficiencies. There were, however, significant differences in gas exchange properties between different localities. Stomatal conductance and CO2 assimilation rate both decreased with increasing salinity and with increasing leaf to air vapour pressure deficit (VPD). Furthermore, the slope of the relationship between assimilation rate and stomatal conductance increased, while intercellular CO2 concentration decreased, with increasing salinity and with decreasing ambient relative humidity. It is concluded from these results that the water use efficiency of mangroves increases with increasing environmental stress, in this case aridity, thereby maximising photosynthetic carbon fixation while minimising water loss.Contribution No. 459 from the Australian Institute of Marine Science  相似文献   
30.
Summary The effects of the availabilities of water and nitrogen on water use efficiency (WUE) of plants were investigated in a sagebrush steppe. The four species studied wereArtemisia tridentata (shrub),Ceratoides lanata (suffrutescent shrub),Elymus lanceolatus (rhizomatous grass), andElymus elymoides (tussock grass). Water and nitrogen levels were manipulated in a two-by-two factorial design resulting in four treatments: control (no additions), added water, added nitrogen, and added water and nitrogen. One instantaneous and two long-term indicators of WUE were used to testa priori predictions of the ranking of WUE among treatments. The short-term indicator was the instantaneous ratio of assimilation to transpiration (A/E). The long-term measures were 1) the slope of the relationship between conductance to water vapor and maximum assimilation and 2) the carbon isotope composition (13C) of plant material. Additional water decreased WUE, whereas additional nitrogen increased WUE. For both A/E and 13C, the mean for added nitrogen alone was significantly greater than the mean for added water alone, and means for the control and added water and nitrogen fell in between. This ranking of WUE supported the hypothesis that both water and nitrogen limit plant gas exchange in this semiarid environment. The short- and long-term indicators were in agreement, providing evidence in support of theoretical models concerning the water cost of carbon assimilation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号