首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8460篇
  免费   1496篇
  国内免费   2507篇
  2024年   73篇
  2023年   266篇
  2022年   218篇
  2021年   381篇
  2020年   501篇
  2019年   509篇
  2018年   480篇
  2017年   470篇
  2016年   474篇
  2015年   483篇
  2014年   459篇
  2013年   525篇
  2012年   401篇
  2011年   435篇
  2010年   391篇
  2009年   472篇
  2008年   531篇
  2007年   588篇
  2006年   572篇
  2005年   462篇
  2004年   452篇
  2003年   387篇
  2002年   359篇
  2001年   341篇
  2000年   325篇
  1999年   281篇
  1998年   263篇
  1997年   199篇
  1996年   162篇
  1995年   149篇
  1994年   127篇
  1993年   112篇
  1992年   112篇
  1991年   86篇
  1990年   83篇
  1989年   61篇
  1988年   38篇
  1987年   37篇
  1986年   43篇
  1985年   21篇
  1984年   27篇
  1983年   21篇
  1982年   26篇
  1981年   5篇
  1980年   15篇
  1979年   10篇
  1978年   9篇
  1977年   7篇
  1976年   8篇
  1972年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
The principles and methods of the vegetation mapping undertaken at the French Institute, Pondicherry, are dealt with herein. Particularly, the characterisation of the different types of vegetation and especially the originality of the method: the dynamic interpretation of the vegetation and the depiction of the bioclimatic conditions. The programme of the forest map of South India at scale 1:250 000, undertaken in collaboration with the forest departments of the concerned states, is then described with special attention given to the source and the collection of data. This map has been conceived to serve as a basic document for the sustainable management of the forests. Three examples of its application are given. They concern the detection of anomalies between the existing forest cover and the prevalent climatic environment; the detection of areas for which protection is urgently needed; the selection of regions showing a particular interest in the field of nature conservation or as gene pool reserve. Finally, an example of a thematic map of sensibility of the forests is given, using the vegetation map as a basis.  相似文献   
152.
Riparian forests play an important role in stream ecosystems, as they support biodiversity, reduce water erosion, and provide litter that fuels aquatic biota. However, they are affected by great array of anthropogenic threats (e.g., fire, logging, and organic pollution), which alter species composition and their physical structure. Although forest recovery after disturbance such as logging can take decades, the legacy of forest clear-cut logging on key processes in tropical riparian ecosystems is mostly unknown. Here, we investigated how litter inputs (leaves, twigs, and reproductive parts) and storage, key processes for carbon and nutrient recycling and for forest and stream biota, are influenced by riparian vegetation undergoing succession (after 28 years from logging) through the comparison of reference and logged forest sites in the Cerrado biome. Litterfall was overall similar between forest types, but litterfall of twigs was twofold higher at logged than reference sites. Similarly, litter inputs from the bank to the stream (i.e., lateral inputs) and streambed storage were 50–60% higher at logged than reference sites. The higher litterfall observed in logged forests could be related to higher proportion of tree species that are characteristic of primary and secondary successional stages, including fast-growing and liana species, which often are more productive and common in anthropogenic areas. Our results showed that the legacy impact of clear-cut logging, even if residual woody vegetation is maintained in riparian buffers, can shift the type, quantity, and seasonality of litter subsidies to tropical streams. This knowledge should be considered within the context of management and conservation of communities and ecosystem processes in the forest-stream interfaces.  相似文献   
153.
Many tropical animals inhabit mosaic landscapes including human-modified habitat. In such landscapes, animals commonly adjust feeding behavior, and may incorporate non-natural foods. These behavioral shifts can influence consumers' nutritional states, with implications for population persistence. However, few studies have addressed the nutritional role of non-natural food. We examined nutritional ecology of wild blue monkeys to understand how dietary habits related to non-natural foods might support population persistence in a mosaic landscape. We documented prevalence and nutritional composition of non-natural foods in monkey diets to assess how habitat use influenced their consumption, and their contribution to nutritional strategies. While most energy and macronutrients came from natural foods, subjects focused non-natural feeding activity on five exotic plants, and averaged about a third of daily calories from non-natural foods. Most non-natural food calories came from non-structural carbohydrates and least from protein. Consumption of non-natural foods related to time in human-modified habitats, which two groups used non-randomly. Non-natural and natural foods were similar in nutrients, and the amount of non-natural food consumed drove variation in nutritional strategy. When more daily calories came from non-natural foods, females consumed a higher ratio of non-protein energy to protein (NPE:P). Females also prioritized protein while allowing NPE:P to vary, increasing NPE while capitalizing on non-natural foods. Overall, these tropical mammals achieved a similar nutrient balance regardless of their intake of non-natural foods. Forest and forest-adjacent areas with non-natural vegetation may provide adequate nutrient access for consumers, and thus contribute to wildlife conservation in mosaic tropical landscapes.  相似文献   
154.
Vertical stratification is a key feature of tropical forests and structures plant–frugivore interactions. However, it is unclear whether vertical differences in plant-frugivore interactions are due to differences among strata in plant community composition or inherent preferences of frugivores for specific strata. To test this, we observed fruit removal of a diverse frugivore community on the liana Marcgravia longifolia in a Peruvian rain forest. Unlike most other plants, Marcgravia longifolia produces fruits across forest strata. This enabled us to study effects of vertical stratification on fruit removal without confounding effects of plant species and stratum. We found a high number of visits of a few frugivore species in the understorey and a low number of visits of many different frugivores in the canopy and midstorey. Whereas partial and opportunistic frugivores foraged across strata with differing frequencies, obligate frugivores were only found eating fruits in the higher strata. Avian frugivores foraging in the canopy were mainly large species with pointed wings, whereas under- and midstorey avian foragers were smaller with rounded wings. Our findings suggest a continuous shift in the frugivore community composition along the vertical gradient, from a few generalized frugivores in the understorey to a diverse set of specialized frugivores in the canopy. This shift in the frugivore community leads to correlated, reciprocal changes from specialized to generalized plant-frugivore interactions. Thus, we conclude that vertical niche differentiation between species in tropical forests persists even when food resources are available across strata. This highlights its role for promoting biodiversity and ecosystem functioning.  相似文献   
155.
Phenology influences many forest functions and can inform forest conservation and management, yet representative phenological data for most common tropical forest tree species remain sparse or absent. Between June 2011 and December 2013, we investigated flowering, fruiting, and leafing patterns in the Bwindi Impenetrable National Park, a montane forest located near the equator in Uganda, drawing on 16,410 observations of 530 trees of 54 species located between 2066 and 2527 m in elevation. The park's climate is equatorial with two wet and dry seasons each year. Flowering and fruiting were strongly seasonal while patterns in leafing were less pronounced. Flower occurrence peaked at the beginning of the short dry season followed by a pronounced trough during the beginning and the middle of the short wet season. Fruit occurrence had a pronounced peak during high rainfall months in March through April with most fruits ripening during drier months in May through July. Fruit scarcity was observed for a 4-month period spanning September to December and most flushing of leaves noted at the end of the wet season in November and December. Our binomial generalized linear mixed models indicated that flowering and fruiting were negatively associated with temperature and that leafing activity was positively associated with rainfall and temperature. These findings are consistent with the insolation- and water-limitation hypotheses suggesting that the seasonally varying availability of resources such as light, water, and nutrients determines these phenological patterns. Ideally, prolonged, multi-year community-level studies would be supported so as to better characterize the influence of climate and of climate variability.  相似文献   
156.
Most studies comparing biodiversity between natural and human-modified landscapes focus on patterns in species occurrence or abundance, but do not consider how different habitat types meet species' breeding requirements. Organisms that use or nest in tree cavities may be especially threatened by habitat conversion due to the loss of their nesting sites. Although cavity-nesting bird diversity is highest in the tropics, little is known about how tropical birds use cavities, how agriculture affects their reproductive biology, and how effective nest boxes could be as a conservation strategy in tropical agriculture. Here, we explored how habitat conversion from tropical forests to pasture affects the abundance, nesting habitat availability, and nest success of cavity-nesting birds in Northwest Ecuador. We conducted bird surveys and measured natural cavity availability and use in forest and agriculture. We also added artificial nest boxes to forest and agriculture to see whether cavity limitation in agriculture would elicit higher use of artificial nest boxes. We found evidence of cavity limitation in agriculture—there were many more natural cavities in forest than in agriculture, as well as more avian use of nest boxes placed in agriculture as compared to forest. Our results suggest that it is important to retain remnant trees in tropical agriculture to provide critical nesting habitat for birds. In addition, adding nest boxes to tropical agricultural systems could be a good conservation strategy for certain species, including insectivores that could provide pest-control services to farmers. Abstract in Spanish is available with online material.  相似文献   
157.
Decomposition is a key process driving carbon and nutrient cycling in ecosystems worldwide. The home field advantage effect (HFA) has been found to accelerate decomposition rates when litter originates from “home” when compared to other (“away”) sites. It is still poorly known how HFA plays out in tropical, riparian forests, particularly in forests under restoration. We carried out three independent reciprocal litter transplant experiments to test how litter quality, soil nutrient concentrations, and successional stage (age) influenced HFA in tropical riparian forests. These experimental areas formed a wide gradient of soil and litter nutrients, which we used to evaluate the more general hypothesis that HFA varies with dissimilarity in soil nutrients and litter quality. We found that HFA increased with soil nutrient dissimilarity, suggesting that litter translocation uncouples relationships between decomposers and litter characteristics; and with litter N:P, indicating P limitation in this system. We also found negative HFA effects at a site under restoration that presented low decomposer ability, suggesting that forest restoration does not necessarily recover decomposer communities and nutrient cycling. Within each of the independent experiments, the occurrence of HFA effects was limited and their magnitude was not related to forest age, nor soil and litter quality. Our results imply that HFA effects in tropical ecosystems are influenced by litter nutrient limitation and soil nutrient dissimilarity between home and away sites, but to further disentangle major HFA drivers in tropical areas, a gradient of dissimilarity between litter and soil properties must be implemented in future experimental designs.  相似文献   
158.
Fossil wood assemblages deposited during 6.300–3.000 yBP, are studied at the Akayama Site, central Japan. Layer III containing fossil woods was divided into three subunits according to intercalating tephras, and total 3618 fossil woods were studied. In the composition, deciduous broad-leaved trees dominated, accompanied by some evergreen conifers. In the diameter distribution, nine taxa accounted for nearly 90% of individuals exceeding 10 cm in diameter. Spatial distribution of nine major and three minor taxa and that of thick individuals clarified the following points: 1)Fraxinus established a lowland forest during 5,000–4,500 yBP, accompanied byAlnus sect.Gymnothyrsus, Acer andAesculus turbinata; 2) small trees ofAlnus sect.Gymnothyrsus extensively intermingled in the lowlandFraxinus forest during 4,500–3,000 yBP; 3)Quercus sect.Prinus and Castanea crenata constituted escarpment forests during 6,300–3,000 yBP; 4)Carpinus sect.Eucarpinus became a major component during 5,000–4,500 yBP, andOstrya japonica replacedCastanea crenata during 4,500–3,000 yBP. Comparison with the other five contemporaneous fossil wood assemblages shows prevalence ofFraxinus-dominant forests during the Late to Latest Jomon Periods in the southern part of the Kanto Plain.  相似文献   
159.
Seasonal changes and yearly gross canopy photosynthetic production were estimated for an 18 year old Japanese larch (Larix leptolepis) forest between 1982 and 1984. A canopy photosynthesis model was applied for the estimation, which took into account the effect of light interception by the non-photosynthetic organs. Seasonal changes in photosynthetic ability, amount of canopy leaf area and light environment within the canopy were also taken into account. Amount of leaf area was estimated by the leaf area growth of a single leaf. The change of light environment within the canopy during the growing season was estimated with a light penetration model and the leaf increment within the canopy. Canopy respiration and surplus production were calculated as seasonal and yearly values for the three years studied. Mean yearly estimates of canopy photosynthesis, canopy respiration and surplus production were 37, 13 and 23 tCO2 ha−1 year−1, respectively. Vertical trend, seasonal changes and yearly values of the estimates were analyzed in relation to environmental and stand factors.  相似文献   
160.
With big data becoming widely available in healthcare, machine learning algorithms such as random forest (RF) that ignores time-to-event information and random survival forest (RSF) that handles right-censored data are used for individual risk prediction alternatively to the Cox proportional hazards (Cox-PH) model. We aimed to systematically compare RF and RSF with Cox-PH. RSF with three split criteria [log-rank (RSF-LR), log-rank score (RSF-LRS), maximally selected rank statistics (RSF-MSR)]; RF, Cox-PH, and Cox-PH with splines (Cox-S) were evaluated through a simulation study based on real data. One hundred eighty scenarios were investigated assuming different associations between the predictors and the outcome (linear/linear and interactions/nonlinear/nonlinear and interactions), training sample sizes (500/1000/5000), censoring rates (50%/75%/93%), hazard functions (increasing/decreasing/constant), and number of predictors (seven, 15 including noise variables). Methods' performance was evaluated with time-dependent area under curve and integrated Brier score. In all scenarios, RF had the worst performance. In scenarios with a low number of events (⩽70), Cox-PH was at least noninferior to RSF, whereas under linearity assumption it outperformed RSF. Under the presence of interactions, RSF performed better than Cox-PH as the number of events increased whereas Cox-S reached at least similar performance with RSF under nonlinear effects. RSF-LRS performed slightly worse than RSF-LR and RSF-MSR when including noise variables and interaction effects. When applied to real data, models incorporating survival time performed better. Although RSF algorithms are a promising alternative to conventional Cox-PH as data complexity increases, they require a higher number of events for training. In time-to-event analysis, algorithms that consider survival time should be used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号