首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10199篇
  免费   1890篇
  国内免费   3537篇
  15626篇
  2024年   92篇
  2023年   342篇
  2022年   290篇
  2021年   506篇
  2020年   658篇
  2019年   816篇
  2018年   777篇
  2017年   612篇
  2016年   620篇
  2015年   623篇
  2014年   597篇
  2013年   696篇
  2012年   538篇
  2011年   554篇
  2010年   538篇
  2009年   592篇
  2008年   656篇
  2007年   725篇
  2006年   659篇
  2005年   568篇
  2004年   555篇
  2003年   467篇
  2002年   435篇
  2001年   398篇
  2000年   366篇
  1999年   325篇
  1998年   294篇
  1997年   194篇
  1996年   170篇
  1995年   152篇
  1994年   133篇
  1993年   106篇
  1992年   106篇
  1991年   89篇
  1990年   84篇
  1989年   58篇
  1988年   35篇
  1987年   36篇
  1986年   37篇
  1985年   18篇
  1984年   24篇
  1983年   18篇
  1982年   28篇
  1981年   4篇
  1980年   9篇
  1979年   5篇
  1978年   7篇
  1977年   6篇
  1976年   3篇
  1958年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.
Summary

Twenty-seven species are recorded from Shetland, especially Fair Isle and Herma Ness, Unst, of which eleven are new records to the island archipelago.  相似文献   
932.
Summary

A large number of projects have recently been initiated in Scotland aiming to restore native woodland, which are being undertaken by a variety of organisations, often in partnership, with environmental NGOs playing a leading role. The objectives, constraints and methodologies of these projects are critically reviewed, partly through a questionnaire survey. Most aim to restore ‘natural’ woodland, but the lack of appropriate reference ecosystems and uncertainty about the characteristics of the original forest hinder the development of precise objectives, and consequently the criteria for success are poorly defined. Most projects face major practical constraints, particularly browsing by herbivores and invasion by exotic species, indicating that they will require long-term management interventions. Most woodlands are isolated from other woodlands, which threatens their long-term viability, restricting colonisation by woodland organisms. Greater reference to ecological theory in practical restoration projects such as these would enable objectives to be defined with more precision, encourage a greater emphasis on ecological processes rather than community composition, and improve management plans through use of predictive tools. In particular, the integration of woodlands into habitat networks, increasing ecological connectivity between woodland fragments, is considered essential to ensure success in the long term.  相似文献   
933.
Bioluminescence is well known among white-spored species of Basidiomycota including several species of the white-rot wood decay genus Armillaria. Previous work demonstrated consistent differences among A. gallica, A. mellea, and A. tabescens in luminescence magnitude and in luminescence expression relative to environmental stimuli. In the present studies, temporal fluctuations in mycelial luminescence were quantitatively characterized using genets matched for geographical location. All genets derived from rhizomorphs or basdiomata were constitutively luminescent while six of 13 genets originating from mycelial fans were inconsistently luminescent. Using time series of 1000 consecutive measurements over 800 ms intervals, fluctuation patterns had significantly quantifiable structure and were not simply ‘white noise’. Fluctuation patterns were qualitatively similar with alternating periods of rapid fluctuation and relative stability, regardless of luminescence magnitude. Anomalous spikes or shifts in luminescence were recorded for several genets suggesting further work to identify the transient stimuli which elicited these altered luminescence patterns.  相似文献   
934.
935.
936.
Background: Fragmentation can fundamentally alter the structure of tropical forests. However, the impacts of fragmentation may vary significantly among regions and lead to different outcomes.

Aims: We examined the structure, composition and dynamics of a forest fragment in Singapore to investigate reasons for the apparent resilience of this forest to long-term isolation.

Methods: We conducted 5 censuses of 12,688 trees ≥1-cm dbh in a 2-ha plot on the edge of the fragment between 1993 and 2012.

Results: Stem density and basal area were not significantly different between 1993 and 2012 and were typical of other south-east Asian forests. However, there were short-term decreases in both variables after droughts in 1997 and 2009, both followed by recovery. Total mortality rate over the 19 years was 3.3% year?1, considerably higher than other tropical forests in Asia, but it was balanced by high recruitment. The 10 most abundant species were primary forest species, pioneer species comprised <5% of all stems, and none of the 338 species in the plot was exotic. However, species abundances changed more than expected by chance for 86 species, and the rank order of the commonest species changed significantly. Species abundance changes were not related to known species traits.

Conclusions: Despite the long period of isolation, we found a surprising level of resilience of the Bukit Timah forest. While the forest may be more sensitive to the effects of climatic fluctuations at decadal time scales, there were very few signs of forest degradation in this diverse fragment of tropical forest.  相似文献   
937.
Forests provide important ecological, economic, and social services, and recent interest has emerged in the potential for using residue from timber harvest as a source of renewable woody bioenergy. The long‐term consequences of such intensive harvest are unclear, particularly as forests face novel climatic conditions over the next century. We used a simulation model to project the long‐term effects of management and climate change on above‐ and belowground forest carbon storage in a watershed in northwestern Oregon. The multi‐ownership watershed has a diverse range of current management practices, including little‐to‐no harvesting on federal lands, short‐rotation clear‐cutting on industrial land, and a mix of practices on private nonindustrial land. We simulated multiple management scenarios, varying the rate and intensity of harvest, combined with projections of climate change. Our simulations project a wide range of total ecosystem carbon storage with varying harvest rate, ranging from a 45% increase to a 16% decrease in carbon compared to current levels. Increasing the intensity of harvest for bioenergy caused a 2–3% decrease in ecosystem carbon relative to conventional harvest practices. Soil carbon was relatively insensitive to harvest rotation and intensity, and accumulated slowly regardless of harvest regime. Climate change reduced carbon accumulation in soil and detrital pools due to increasing heterotrophic respiration, and had small but variable effects on aboveground live carbon and total ecosystem carbon. Overall, we conclude that current levels of ecosystem carbon storage are maintained in part due to substantial portions of the landscape (federal and some private lands) remaining unharvested or lightly managed. Increasing the intensity of harvest for bioenergy on currently harvested land, however, led to a relatively small reduction in the ability of forests to store carbon. Climate change is unlikely to substantially alter carbon storage in these forests, absent shifts in disturbance regimes.  相似文献   
938.
Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations of major LUCs from cropland, grassland, and forest to lands producing biofuel crops (i.e. corn, switchgrass, Miscanthus, poplar, and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted in an overall SOC gain of 6–14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9–35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus, or willow. The SOC response ratios were similar in both 0–30 and 0–100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems and forest transitions, additional field trials, and modeling efforts are needed to draw conclusions about the site‐ and system‐specific rates and direction of change.  相似文献   
939.
In this work, we studied the potentials offered by managed boreal forests and forestry to mitigate the climate change using forest‐based materials and energy in substituting fossil‐based materials (concrete and plastic) and energy (coal and oil). For this purpose, we calculated the net climate impacts (radiative forcing) of forest biomass production and utilization in the managed Finnish boreal forests (60°–70°N) over a 90‐year period based on integrated use forest ecosystem model simulations (on carbon sequestration and biomass production of forests) and life‐cycle assessment (LCA) tool. When studying the effects of management on the radiative forcing in a system integrating the carbon sink/sources dynamics in both biosystem and technosystem, the current forest management (baseline management) was used a reference management. Our results showed that the use of forest‐based materials and energy in substituting fossil‐based materials and energy would provide an effective option for mitigating climate change. The negative climate impacts could be further decreased by maintaining forest stocking higher over the rotation compared to the baseline management and by harvesting stumps and coarse roots in addition to logging residues in the final felling. However, the climate impacts varied substantially over time depending on the prevailing forest structure and biomass assortment (timber, energy biomass) used in substitution.  相似文献   
940.
Arbuscular mycorrhizal (AM) fungi can influence plant nutrient uptake and, therefore, may alter interspecific plant competition. However, the role of AM fungi in subtropical tree competition is poorly understood. In this study, we investigated the effects of AM fungus identity (four species) and diversity (a mixture of the same four species) on the competitive relationships between seedlings of a pioneer tree Rhus chinensis and a late-pioneer tree Celtis sinensis, and between R. chinensis and a mid-successional tree Cinnamomum camphora. In seedlings, AM fungi significantly promoted a competitive advantage of R. chinensis over both Ce. sinensis and Ci. camphora. Furthermore, the extent to which AM fungi affected interspecific plant competition outcomes was dependent on AM fungus identity, and the effect of AM fungus diversity on interspecific competition outcomes may derive from the most beneficial AM fungal species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号