首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   291篇
  免费   17篇
  国内免费   42篇
  2023年   5篇
  2022年   12篇
  2021年   13篇
  2020年   8篇
  2019年   25篇
  2018年   36篇
  2017年   16篇
  2016年   13篇
  2015年   8篇
  2014年   23篇
  2013年   27篇
  2012年   4篇
  2011年   11篇
  2010年   5篇
  2009年   9篇
  2008年   14篇
  2007年   15篇
  2006年   11篇
  2005年   13篇
  2004年   5篇
  2003年   7篇
  2002年   8篇
  2001年   5篇
  2000年   7篇
  1999年   3篇
  1998年   6篇
  1997年   7篇
  1996年   1篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1991年   3篇
  1990年   2篇
  1989年   7篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有350条查询结果,搜索用时 31 毫秒
71.
A range of clinical conditions in which fetal movement is reduced or prevented can have a severe effect on skeletal development. Animal models have been instrumental to our understanding of the interplay between mechanical forces and skeletal development, particularly the mouse and the chick model systems. In the chick, the most commonly used means of altering the mechanical environment is by pharmaceutical agents which induce paralysis, whereas genetically modified mice with nonfunctional or absent skeletal muscle offer a valuable tool for examining the interplay between muscle forces and skeletogenesis in mammals. This article reviews the body of research on animal models of bone or joint formation in vivo in the presence of an altered or abnormal mechanical environment. In both immobilized chicks and “muscleless limb” mice, a range of effects are seen, such as shorter rudiments with less bone formation, changes in rudiment and joint shape, and abnormal joint cavitation. However, although all bones and synovial joints are affected in immobilized chicks, some rudiments and joints are unaffected in muscleless mice. We propose that extrinsic mechanical forces from movements of the mother or littermates impact on skeletogenesis in mammals, whereas the chick embryo is reliant on intrinsic movement for mechanical stimulation. The insights gained from animal models into the mechanobiology of embryonic skeletal development could provide valuable cues to prospective tissue engineers of cartilage and bone and contribute to new or improved treatments to minimize the impact on skeletal development of reduced movement in utero. Birth Defects Research (Part C) 90:203–213, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
72.
PurposeTo investigate the displacement forces and image artifacts associated with passive medical implants for recently-developed low-field (<100 mT) MRI systems, and to compare these with values from higher field strengths used for clinical diagnosis.MethodsSetups were constructed to measure displacement forces in a permanent magnet-based Halbach array used for in vivo MRI at 50 mT, and results compared with measurements at 7 T. Image artifacts were assessed using turbo (fast) spin echo imaging sequences for four different passive medical implants: a septal occluder, iliac stent, pedicle screw and (ferromagnetic) endoscopic clip. Comparisons were made with artifacts produced at 1.5, 3 and 7 T. Finally, specific absorption rate (SAR) simulations were performed to determine under what operating conditions the limits might be approached at low-field.ResultsDisplacement forces at 50 mT on all but the ferromagnetic implant were between 1 and 10 mN. Image artifacts at 50 mT were much less than at clinical field strengths for all passive devices, and with the exception of the ferromagnetic clip. SAR simulations show that very long echo train (>128) turbo spin echo sequences can be run with short inter-pulse times (5–10 ms) within SAR limits.ConclusionsThis work presents the first evaluation of the effects of passive implants at field strengths less than 100 mT in terms of displacement forces, image artifacts and SAR. The results support previous claims that such systems can be used safely and usefully in challenging enviroments such as the intensive care unit.  相似文献   
73.
74.
The purpose of this study was to evaluate the relationships between heart rate (f c), oxygen consumption (VO2), peak force and average force developed at the crank in response to submaximal exercise employing a racing bicycle which was attached to an ergometer (RE), ridden on a treadmill (TC) and ridden on a 400-m track (FC). Eight male trained competitive cyclists rode at three pre-determined work intensities set at a proportion of their maximal oxygen consumption (VO2max): (1) below lactate threshold [work load that produces a (VO2) which is 10% less than the lactate threshold VO2 (sub-LT)], (2) lactate threshold VO2 (LT), and (3) above lactate threshold [workload that produces a VO2 which is 10% greater than lactate threshold VO2 (supra-LT)], and equated across exercise modes on the basis off c. Voltage signals from the crank arm were recorded as FM signals for subsequent representation of peak and average force. Open circuit VO2 measurements were done in the field by Douglas bag gas collection and in the laboratory by automated gas collection and analysis.f c was recorded with a telemeter (Polar Electro Sport Tester, PE3000). Significant differences (P < 0.05) were observed: (1) in VO2 between FC and both laboratory conditions at sub-LT intensity and LT intensities, (2) in peak force between FC and TC at sub-LT intensity, (3) in average force between FC and RE at sub-LT. No significant differences were demonstrated at supra-LT intensity for VO2. Similarly no significant differences were observed in peak and average force for either LT or supra-LT intensities. These data indicate that equating work intensities on the basis off c measured in laboratory conditions would overestimate the VO2 which would be generated in the field and conversely, that usingf c measured in the laboratory to establish field work intensity would underestimate mechanical workload experienced in the field.  相似文献   
75.
Oriented cell divisions are essential for the generation of cell diversity and for tissue shaping during morphogenesis. Cells in tissues are mechanically linked to their neighbors, upon which they impose, and from which they experience, physical force. Recent work in multiple systems has revealed that tissue-level physical forces can influence the orientation of cell division. A long-standing question is whether forces are communicated to the spindle orienting machinery via cell shape or directly via mechanosensing intracellular machinery. In this article, we review the current evidence from diverse model systems that show spindles are oriented by tissue-level physical forces and evaluate current models and molecular mechanisms proposed to explain how the spindle orientation machinery responds to extrinsic force.  相似文献   
76.
Effective tissue engineering requires appropriate selection of cells and scaffold, where the latter serves as a mechanical and biological support for cell growth and functionality. The optimal combination of cell source and scaffold properties can vary for each desired application. Such preconditions necessitate enhanced understanding of the interactions between cells and scaffold within engineered tissue. Several studies have examined the deforming effects cells induce in scaffolds via exertion of contractile forces. In contrast, other studies focus on the scaffold's biochemical and mechanical properties and their effects on cell behavior.This review summarizes the mechanical interplay between cells and scaffold within engineered tissue. We present evidence for contractile forces exerted by cells on three-dimensional (3D) scaffolds and discuss existing methods for their quantification. In addition, we address some theories related to the effects of scaffold stiffness and mechanical stimulation on cell behavior. Further understanding of the reciprocal effects between cells and scaffold will provide both enhanced knowledge regarding the expected properties of engineered tissue and more competent tissue regeneration techniques.  相似文献   
77.
The well documented biochemical profile of Brassicaceae, oligophagy of the herbivore Plutella xylostella (L.) (Lepidoptera: Plutellidae), and host specialization of the parasitoid Diadegma insulare (Cresson) (Hymenoptera: Ichneumonidae) provide an ideal system for investigating tritrophic interactions mediated by nutritional quality of plants. We evaluated the bottom-up effects of five soil fertility regimes on nutritional quality of canola (Brassica napus L.) and then on several fitness correlates of female and male D. insulare as mediated through P. xylostella. Variation in soil fertility influenced the nutritional quality of host plants and this in turn affected the performance of D. insulare. In general, D. insulare performed best on plants grown with 3.0 g fertilizer pot−1; these plants had 2.06-, 3.77-, and 1.02-fold more nitrogen, phosphorous and potassium, respectively than ones grown without any added fertilizer. P. xylostella escape from D. insulare was highest (32%) on plants grown at 1.0 g fertilizer, and this could be attributed to both physical and physiological defense mechanisms mediated by host plant nutritional quality. Plant stress and plant vigor are competing paradigms pertaining to the performance of herbivorous insects on their host plants. These hypotheses were originally proposed to predict responses of herbivores, but may also explain the effects of plant quality on koinobiont parasitoids, such as D. insulare.  相似文献   
78.
1. Although several species of Peucetia (Oxyopidae) live strictly in association with plants bearing glandular trichomes worldwide, to date little is known about whether these associations are mutualistic. 2. In this study we manipulated the presence of Peucetia flava on the glandular plant Rhynchanthera dichotoma in the rainy and post‐rain season, to test the strength of its effects on leaf, bud, and flower damage and plant reproductive output. In addition, we ran independent field experiments to examine whether these sticky structures improve spider fidelity to plants. 3. Peucetia suppressed some species of foliar phytophages, but not others. Although spiders have reduced levels of leaf herbivory, this phenomenon was temporally conditional, i.e. occurred only in the post‐rain but not in the rainy season. Floral herbivory was also reduced in the presence of spiders, but these predators did not affect plant fitness components. 4. Plants that had their glandular trichomes removed retained fewer insects than those bearing such structures. Spiders remained longer on plants with glandular trichomes than on plants in which these structures had been removed. Isotopic analyses showed that spiders that fed on live and dead labelled flies adhered to the glandular hairs in similar proportions. 5. Spiders incurred no costs to the plants, but can potentially increase individual plant fitness by reducing damage to reproductive tissues. Temporal conditionality probably occurred because plant productivity exceeded herbivore consumption, thus dampening top‐down effects. Specialisation to live on glandular plants may have favoured scavenging behaviour in Peucetia, possibly an adaptation to periods of food scarcity.  相似文献   
79.
Steller sea lions are highly maneuverable marine mammals (expressed as minimum turning radius). Video recordings of turns ( n = 195) are analyzed from kinematic measurements for three captive animals. Speed-time plots of 180° turns have a typical "V-shape." The sea lions decelerated during the first half of the turn, reached a minimum speed in the middle of the curved trajectory and reaccelerated by adduction of the pectoral flippers. The initial deceleration was greater than that for passive gliding due to pectoral flipper braking and/or change in body contour from a stiff, straight streamlined form. Centripetal force and thrust were determined from the body acceleration. Most thrust was produced during the power phase of the pectoral flipper stroke cycle. Contrary to previous findings on otariids, little or no thrust was generated during initial abduction of the pectoral flippers and during the final drag-based paddling phase of the stroke cycle. Peak thrust force at the center of gravity occurs halfway through the power phase and the centripetal force is maximal at the beginning of the power stroke. Performance is modulated by changes in the duration and intensity of movements without changing their sequence. Turning radius, maximum velocity, maximum acceleration and turning duration were 0.3 body lengths, 3.5 m/s, 5 m/s2, and 1.6 s, respectively. The relative maneuverability based on velocity and length specific minimum turning radius is comparable to other otariids, superior to cetaceans but inferior to many fish.  相似文献   
80.
The characterization of substrate transport in the bulk phase and in the biofilm matrix is one of the problems which has to be solved for the verification of biofilm models. Additionally, the surface structure of biofilms has to be described with appropriate parameters. Magnetic resonance imaging (MRI) is one of the promising methods for the investigation of transport phenomena and structure in biofilm systems. The MRI technique allows the noninvasive determination of flow velocities and biofilm structures with a high resolution on the sub-millimeter scale. The presented investigations were carried out for defined heterotrophic biofilms which were cultivated in a tube reactor at a Reynolds number of 2000 and 8000 and a substrate load of 6 and 4 g/m2d glucose. Magnetic resonance imaging provides both structure data of the biofilm surface and flow velocities in the bulk phase and at the bulk/biofilm interface. It is shown that the surface roughness of the biofilms can be determined in one experiment for the complete cross section of the test tubes both under flow and stagnant conditions. Furthermore, the local shear stress was calculated from the measured velocity profiles. In the investigated biofilm systems the local shear stress at the biofilm surface was up to 3 times higher compared to the mean wall shear stress calculated on the base of the mean flow velocity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号