首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18133篇
  免费   1724篇
  国内免费   711篇
  2024年   58篇
  2023年   316篇
  2022年   399篇
  2021年   677篇
  2020年   657篇
  2019年   651篇
  2018年   622篇
  2017年   580篇
  2016年   587篇
  2015年   763篇
  2014年   896篇
  2013年   991篇
  2012年   762篇
  2011年   685篇
  2010年   656篇
  2009年   868篇
  2008年   927篇
  2007年   981篇
  2006年   777篇
  2005年   702篇
  2004年   665篇
  2003年   678篇
  2002年   577篇
  2001年   490篇
  2000年   461篇
  1999年   421篇
  1998年   355篇
  1997年   303篇
  1996年   304篇
  1995年   260篇
  1994年   290篇
  1993年   280篇
  1992年   222篇
  1991年   209篇
  1990年   184篇
  1989年   183篇
  1988年   162篇
  1987年   130篇
  1986年   105篇
  1985年   123篇
  1984年   136篇
  1983年   75篇
  1982年   80篇
  1981年   91篇
  1980年   66篇
  1979年   50篇
  1978年   38篇
  1977年   38篇
  1976年   25篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
It has long been assumed that serial homologues are ancestrally similar—polysomerism resulting from a “duplication” or “repetition” of forms—and then often diverge—anisomerism, for example, as they become adapted to perform different tasks as is the case with the forelimb and hind limbs of humans. However, such an assumption, with crucial implications for comparative, evolutionary, and developmental biology, and for evolutionary developmental biology, has in general not really been tested by a broad analysis of the available empirical data. Perhaps not surprisingly, more recent anatomical comparisons, as well as molecular knowledge of how, for example, serial appendicular structures are patterned along with different anteroposterior regions of the body axis of bilateral animals, and how “homologous” patterning domains do not necessarily mark “homologous” morphological domains, are putting in question this paradigm. In fact, apart from showing that many so-called “serial homologues” might not be similar at all, recent works have shown that in at least some cases some “serial” structures are indeed more similar to each other in derived taxa than in phylogenetically more ancestral ones, as pointed out by authors such as Owen. In this article, we are taking a step back to question whether such assumptions are actually correct at all, in the first place. In particular, we review other cases of so-called “serial homologues” such as insect wings, arthropod walking appendages, Dipteran thoracic bristles, and the vertebrae, ribs, teeth, myomeres, feathers, and hairs of chordate animals. We show that: (a) there are almost never cases of true ancestral similarity; (b) in evolution, such structures—for example, vertebra—and/or their subparts—for example, “transverse processes”—many times display trends toward less similarity while in many others display trends toward more similarity, that is, one cannot say that there is a clear, overall trend to anisomerism.  相似文献   
42.
Whole cells of Chlorella vulgaris and Clostridium butyricum were co-immobilized in 2% agar gel. NADP was suitable as an electron carrier. The rate of hydrogen evolution increased with increasing NADP concentration. The optimum conditions for hydrogen evolution were pH 7.0 and 37°C. The immobilized C. vulgaris-NADP-immobilized Cl. butyricum system continuously evolved hydrogen at a rate of 0.29–1.34 μmol/h per mg Chl for 6 days. On the other hand, the system without NADP evolved only a trace amount of hydrogen.  相似文献   
43.
Complex coevolutionary relationships among competitors, predators, and prey have shaped taxa diversity, life history strategies, and even the avian migratory patterns we see today. Consequently, accurate documentation of prey selection is often critical for understanding these ecological and evolutionary processes. Conventional diet study methods lack the ability to document the diet of inconspicuous or difficult‐to‐study predators, such as those with large home ranges and those that move vast distances over short amounts of time, leaving gaps in our knowledge of trophic interactions in many systems. Migratory raptors represent one such group of predators where detailed diet studies have been logistically challenging. To address knowledge gaps in the foraging ecology of migrant raptors and provide a broadly applicable tool for the study of enigmatic predators, we developed a minimally invasive method to collect dietary information by swabbing beaks and talons of raptors to collect trace prey DNA. Using previously published COI primers, we were able to isolate and reference gene sequences in an open‐access barcode database to identify prey to species. This method creates a novel avenue to use trace molecular evidence to study prey selection of migrating raptors and will ultimately lead to a better understanding of raptor migration ecology. In addition, this technique has broad applicability and can be used with any wildlife species where even trace amounts of prey debris remain on the exterior of the predator after feeding.  相似文献   
44.
Summary The sequence homology in the single copy DNA of sea stars has been measured. Labeled single copy DNA fromPisaster ochraceus was reannealed with excess genomic DNA fromP. brevispinus, Evasterias troschelii, Pycnopodia helianthoides, Solaster stimpsoni, andDermasterias imbricata. Reassociation reactions were performed under two criteria of salt and temperature. The extent of reassociation and thermal denaturation characteristics of hybrid single copy DNA molecules follow classical taxonomic lines.P. brevispinus DNA contains essentially all of the sequences present inP. ochraceus single copy tracer whileEvasterias andPycnopodia DNAs contain 52% and 46% of such sequences respectively. Reciprocal reassociation reactions with labeledEvasterias single copy DNA confirm the amount and fidelity of the sequence homology. There is a small definite reaction of uncertain homology betweenP. ochraceus single copy DNA andSolaster orDermasterias DNA. SimilarlySolaster DNA contains sequences homologous to approximately 18% ofDermasterias unique DNA. The thermal denaturation temperatures of heteroduplexes indicate that the generaPisaster andEvasterias diverged shortly after the divergence of the subfamilies Pycnopodiinae and Asteriinae. The twoPisaster species diverged more recently, probably in the most recent quarter of the interval since the separation of the generaPisaster andEvasterias.  相似文献   
45.
46.
Five species of sea skaters, genus Halobates Eschscholtz, are the only insects to have successfully colonized the open ocean. In addition, 36 species are found in sheltered coastal waters throughout tropical Indo-Pacific. The taxonomy of the genus is relatively well known, but reliable hypotheses about phylogenetic relationships are required if the biogeography and evolution of sea skaters is to be discussed in a meaningful way. This work presents the results of a study of new characters from the genital segments, especially those of the male phallus and the female gynatrial complex, and a reinterpretation for several other characters. In total 64 characters were scored for 26 species of Halobates , two species ofAsclepios and one species of Metrocoris. With Asclepios and Metrocoris species as outgroups, the character state sets were analysed cladistically using the computer program Hennig86. After critical evaluations of both characters and clades, a phylogeny for Halobates is presented and its taxonomic implications are discussed. A number of monophyletic species groups are delimited. One genus-level synonymy and three species-level synonymies are suggested. The evolution of Halobates is discussed in the light of the reconstructed phylogeny and present knowledge of the ecology and behaviour of sea skaters. A hypothesis of ecological evolution in halobatine water striders is proposed and tested.  相似文献   
47.
Human migration is nonrandom. In small scale societies of the past, and in the modern world, people tend to move to wealthier, safer, and more just societies from poorer, more violent, less just societies. If immigrants are assimilated, such nonrandom migration can increase the occurrence of culturally transmitted beliefs, values, and institutions that cause societies to be attractive to immigrants. Here we describe and analyze a simple model of this process. This model suggests that long run outcomes depend on the relative strength of migration and local adaptation. When local adaption is strong enough to preserve cultural variation among groups, cultural variants that make societies attractive always predominate, but never drive alternative variants to extinction. When migration predominates, outcomes depend both on the relative attractiveness of alternative variants and on the initial sizes of societies that provide and receive immigrants.  相似文献   
48.
《Journal of morphology》2017,278(1):4-28
The laterosensory system is a mechanosensory modality involved in many aspects of fish biology and behavior. Laterosensory perception may be crucial for individual survival, especially in habitats where other sensory modalities are generally useless, such as the permanently aphotic subterranean environment. In the present study, we describe the laterosensory canal system of epigean and subterranean species of the genus Ituglanis (Siluriformes: Trichomycteridae). With seven independent colonizations of the subterranean environment in a limited geographical range coupled with a high diversity of epigean forms, the genus is an excellent model for the study of morphological specialization to hypogean life. The comparison between epigean and subterranean species reveals a trend toward reduction of the laterosensory canal system in the subterranean species, coupled with higher intraspecific variability and asymmetry. This trend is mirrored in other subterranean fishes and in species living in different confined spaces, like the interstitial environment. Therefore, we propose that the reduction of the laterosensory canal system should be regarded as a troglomorphic (= cave‐related) character for subterranean fishes. We also comment about the patterns of the laterosensory canal system in trichomycterids and use the diversity of this system among species of Ituglanis to infer phylogenetic relationships within the genus. J. Morphol. 278:4–28, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   
49.
Abstract

The way in which foraging wasps use cues for prey location and choice appears to depend on both the context and on the type of prey. Vespula germanica is an opportunistic, generalist prey forager, and individual wasp foragers often return to hunt at sites of previous hunting success. In this paper, we studied which cues are used by this wasp when relocating a food source. Particularly we analysed the response to a displaced visual cue versus a foraging location at which either honey or cat food had been previously presented. We conclude that location is used over a displaced visual cue for directing wasp hovering, although the landing response is directed differently according to bait type. When wasps are exploiting cat food, location also elicits landing, but if they are exploiting honey, a displaced visual cue elicits landing more frequently than location.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号