首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4069篇
  免费   600篇
  国内免费   248篇
  4917篇
  2024年   6篇
  2023年   40篇
  2022年   88篇
  2021年   114篇
  2020年   83篇
  2019年   107篇
  2018年   108篇
  2017年   108篇
  2016年   98篇
  2015年   137篇
  2014年   137篇
  2013年   280篇
  2012年   134篇
  2011年   183篇
  2010年   152篇
  2009年   218篇
  2008年   245篇
  2007年   243篇
  2006年   273篇
  2005年   286篇
  2004年   275篇
  2003年   237篇
  2002年   235篇
  2001年   131篇
  2000年   102篇
  1999年   110篇
  1998年   119篇
  1997年   109篇
  1996年   48篇
  1995年   79篇
  1994年   67篇
  1993年   63篇
  1992年   58篇
  1991年   37篇
  1990年   25篇
  1989年   20篇
  1988年   17篇
  1987年   15篇
  1986年   17篇
  1985年   17篇
  1984年   24篇
  1983年   16篇
  1982年   15篇
  1981年   5篇
  1980年   4篇
  1979年   12篇
  1978年   4篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
排序方式: 共有4917条查询结果,搜索用时 15 毫秒
31.
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) plays a critical role in sustaining life by catalysis of carbon fixation in the Calvin–Benson pathway. Incomplete knowledge of the assembly pathway of chloroplast Rubisco has hampered efforts to fully delineate the enzyme's properties, or seek improved catalytic characteristics via directed evolution. Here we report that a Mu transposon insertion in the Zea mays (maize) gene encoding a chloroplast dimerization co‐factor of hepatocyte nuclear factor 1 (DCoH)/pterin‐4α‐carbinolamine dehydratases (PCD)‐like protein is the causative mutation in a seedling‐lethal, Rubisco‐deficient mutant named Rubisco accumulation factor 2 (raf21). In raf2 mutants newly synthesized Rubisco large subunit accumulates in a high‐molecular weight complex, the formation of which requires a specific chaperonin 60‐kDa isoform. Analogous observations had been made previously with maize mutants lacking the Rubisco biogenesis proteins RAF1 and BSD2. Chemical cross‐linking of maize leaves followed by immunoprecipitation with antibodies to RAF2, RAF1 or BSD2 demonstrated co‐immunoprecipitation of each with Rubisco small subunit, and to a lesser extent, co‐immunoprecipitation with Rubisco large subunit. We propose that RAF2, RAF1 and BSD2 form transient complexes with the Rubisco small subunit, which in turn assembles with the large subunit as it is released from chaperonins.  相似文献   
32.
The accumulation of pathogenic protein oligomers and aggregates is associated with several devastating amyloid diseases. As protein aggregation is a multi-step nucleation-dependent process beginning with unfolding or misfolding of the native state, it is important to understand how innate protein dynamics influence aggregation propensity. Kinetic intermediates composed of heterogeneous ensembles of oligomers are frequently formed on the aggregation pathway. Characterization of the structure and dynamics of these intermediates is critical to the understanding of amyloid diseases since oligomers appear to be the main cytotoxic agents. In this review, we highlight recent biophysical studies of the roles of protein dynamics in driving pathogenic protein aggregation, yielding new mechanistic insights that can be leveraged for design of aggregation inhibitors.  相似文献   
33.
对从连云港东西连岛海泥样品中分离得到的菌株Bacillus pumilus HX2-2的分类地位、生长条件和抑菌活性进行了研究。经过形态特征、生理生化性质及16S r DNA序列分析鉴定,该菌属于短小芽胞杆菌。不同温度、盐度、pH培养条件下测定菌液吸光度OD600值,表明该菌是一株轻度嗜盐菌,最适温度、盐度、pH分别为30℃、3%、7.0~8.0。在不同病原真菌的平板抑菌活性试验中,该菌对草莓尖胞镰刀菌、马铃薯炭疽病菌和水稻立枯丝核菌表现出显著的抑菌作用。菌株B.pumilus HX2-2是一株短小芽胞杆菌,具有广谱抑菌活性,具有进一步研究的价值。  相似文献   
34.
We have used laser temperature-jump to investigate the kinetics and mechanism of folding the 35 residue subdomain of the villin headpiece. The relaxation kinetics are biphasic with a sub-microsecond phase corresponding to a helix-coil transition and a slower microsecond phase corresponding to overall unfolding/refolding. At 300 K, the folding time is 4.3(+/-0.6) micros, making it the fastest folding, naturally occurring protein, with a rate close to the theoretical speed limit. This time is in remarkable agreement with the prediction of 5 (+11,-3) micros by Zagrovic et al. from atomistic molecular dynamics simulations using an implicit solvent model. We test their prediction that replacement of the C-terminal phenylalanine residue with alanine will increase the folding rate by removing a transient non-native interaction. We find that the alanine substitution has no effect on the folding rate or on the equilibrium constant. Implications of this result for the validity of the simulated folding mechanism are discussed.  相似文献   
35.
This study describes an efficient multiparallel automated workflow of cloning, expression, purification, and crystallization of a large set of construct variants for isolated protein domains aimed at structure determination by X-ray crystallography. This methodology is applied to MAPKAP kinase 2, a key enzyme in the inflammation pathway and thus an attractive drug target. The study reveals a distinct subset of truncation variants with improved crystallization properties. These constructs distinguish themselves by increased solubility and stability during a parallel automated multistep purification process including removal of the recombinant tag. High-throughput protein melting point analysis characterizes this subset of constructs as particularly thermostable. Both parallel purification screening and melting point determination clearly identify residue 364 as the optimal C terminus for the kinase domain. Moreover, all three constructs that ultimately crystallized feature this C terminus. At the N terminus, only three amino acids differentiate a noncrystallizing from a crystallizing construct. This study addresses the very common issues associated with difficult to crystallize proteins, those of solubility and stability, and the crucial importance of particular residues in the formation of crystal contacts. A methodology is suggested that includes biophysical measurements to efficiently identify and produce construct variants of isolated protein domains which exhibit higher crystallization propensity.  相似文献   
36.
Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2. European avian-like H1N1 viruses, which were initially detected in European pig populations in 1979, have been circulating in pigs in eastern China since 2007. In this study, six influenza A viruses were isolated from 60 swine lung samples collected from January to April 2011 in eastern China. Based on whole genome sequencing, molecular characteristics of two isolates were determined. Phylogenetic analysis showed the eight genes of the two isolates were closely related to those of the avian-like H1N1 viruses circulating in pig populations, especially similar to those found in China. Four potential glycosylation sites were observed at positions 13, 26, 198, 277 in the HA1 proteins of the two isolates. Due to the presence of a stop codon at codon 12, the isolates contained truncated PB1-F2 proteins. In this study, the isolates contained 591Q, 627E and 701N in the polymerase subunit PB2, which had been shown to be determinants of virulence and host adaptation. The isolates also had a D rather than E at position 92 of the NS1, a marker of mammalian adaptation. Both isolates contained the GPKV motif at the PDZ ligand domain of the 3′ end of the NS1, a characteristic marker of the European avian-like swine viruses since about 1999, which is distinct from those of avian, human and classical swine viruses. The M2 proteins of the isolates have the mutation (S31N), a characteristic marker of the European avian-like swine viruses since about 1987, which may confer resistance to amantadine and rimantadine antivirals. Our findings further emphasize the importance of surveillance on the genetic diversity of influenza A viruses in pigs, and raise more concerns about the occurrence of cross-species transmission events.  相似文献   
37.
We report a detailed all-atom simulation of the folding of the GCAA RNA tetraloop. The GCAA tetraloop motif is a very common and thermodynamically stable secondary structure in natural RNAs. We use our simulation methods to study the folding behavior of a 12-base GCAA tetraloop structure with a four-base helix adjacent to the tetraloop proper. We implement an all-atom Monte Carlo (MC) simulation of RNA structural dynamics using a Go potential. Molecular dynamics (MD) simulation of RNA and protein has realistic energetics and sterics, but is extremely expensive in terms of computational time. By coarsely treating non-covalent energetics, but retaining all-atom sterics and entropic effects, all-atom MC techniques are a useful method for the study of protein and now RNA. We observe a sharp folding transition for this structure, and in simulations at room temperature the state histogram shows three distinct minima: an unfolded state (U), a more narrow intermediated state (I), and a narrow folded state (F). The intermediate consists primarily of structures with the GCAA loop and some helix hydrogen bonds formed. Repeated kinetic folding simulations reveal that the number of helix base-pairs forms a simple 1D reaction coordinate for the I-->N transition.  相似文献   
38.
A new split β‐lactamase assay promises experimental testing of the interplay of protein stability and function. Proteins are sufficiently stable to act effectively within cells. However, mutations generally destabilize structure, with effects on free energy that are comparable to the free energy of folding. Assays of protein functionality and stability in vivo enable a quick study of factors that influence these properties in response to targeted mutations. These assays can help molecular engineering but can also be used to target important questions, including why most proteins are marginally stable, how mutations alter structural makeup, and how thermodynamics, function, and environment shape molecular change. Processes of self‐organization and natural selection are determinants of stability and function. Non‐equilibrium thermodynamics provides crucial concepts, e.g., cells as emergent energy‐dissipating entities that do work and build their own parts, and a framework to study the sculpting role of evolution at different scales.  相似文献   
39.
Water dynamics clue to key residues in protein folding   总被引:1,自引:0,他引:1  
A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.  相似文献   
40.
The structure of calbindin D(9k) with two substitutions was determined by X-ray crystallography at 1.8-A resolution. Unlike wild-type calbindin D(9k), which is a monomeric protein with two EF-hands, the structure of the mutated calbindin D(9k) reveals an intertwined dimer. In the dimer, two EF-hands of the monomers have exchanged places, and thus a 3D domain-swapped dimer has been formed. EF-hand I of molecule A is packed toward EF-hand II of molecule B and vice versa. The formation of a hydrophobic cluster, in a region linking the EF-hands, promotes the conversion of monomers to 3D domain-swapped dimers. We propose a mechanism by which domain swapping takes place via the apo form of calbindin D(9k). Once formed, the calbindin D(9k) dimers are remarkably stable, as with even larger misfolded aggregates like amyloids. Thus calbindin D(9k) dimers cannot be converted to monomers by dilution. However, heating can be used for conversion, indicating high energy barriers separating monomers from dimers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号