首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1842篇
  免费   73篇
  国内免费   13篇
  1928篇
  2023年   7篇
  2022年   16篇
  2021年   14篇
  2020年   24篇
  2019年   41篇
  2018年   40篇
  2017年   24篇
  2016年   26篇
  2015年   28篇
  2014年   38篇
  2013年   96篇
  2012年   37篇
  2011年   37篇
  2010年   46篇
  2009年   61篇
  2008年   66篇
  2007年   56篇
  2006年   55篇
  2005年   58篇
  2004年   45篇
  2003年   41篇
  2002年   34篇
  2001年   47篇
  2000年   40篇
  1999年   33篇
  1998年   30篇
  1997年   37篇
  1996年   31篇
  1995年   32篇
  1994年   34篇
  1993年   44篇
  1992年   49篇
  1991年   44篇
  1990年   45篇
  1989年   54篇
  1988年   41篇
  1987年   42篇
  1986年   42篇
  1985年   56篇
  1984年   53篇
  1983年   42篇
  1982年   59篇
  1981年   40篇
  1980年   25篇
  1979年   26篇
  1978年   27篇
  1977年   18篇
  1976年   21篇
  1974年   7篇
  1971年   5篇
排序方式: 共有1928条查询结果,搜索用时 15 毫秒
51.
Plasma membranes from the green alga Chlamydomonas reinhardtii were purified by differential centrifugation and two-phase partitioning in an aqueous polymer system. The isolated plasma membranes were virtually free from contaminating chloroplasts, mitochondria, endoplasmic reticulum and Golgi membranes as shown by marker enzyme and pigment analysis. The isolated plasma membranes exhibited vanadate sensitive ATPase activity, indicating the presence of a P-type ATPase. This was verified by using antibodies against P-type ATPase from Arabidopsis , which crossreacted with a protein of 109 kDa. The ATPase activity was inhibited to more than 90% by vanadate (Ki= 0.9 μ M ) but not affected by inhibitors specific for F- or V-type ATPases. demonstrating the purity of the plasma membranes. Mg-ATP was the substrate, and the rate of ATP-hydrolysis followed simple Michaelis-Menten kinetics giving a Km= 0.46 m M . Free Mg2+ stimulated the activity, K1/2= 0.68 m M . Maximal activity was obtained at pH 8. The ATPase activity was latent but stimulated 10 to 20-fold in the presence of detergents. This indicates that the isolated plasma membrane vesicles were tightly sealed and mostly right-side-out, making the ATPase inaccessible to the hydrophilic substrate ATP. In the presence of the Brij 58, the isolated plasma membranes performed ATP dependent H+-pumping as shown by the optical pH probe acridine orange. H+-pumping was dependent on the presence of valinomycin and K+ ions and completely abolished by vanadate. Addition of Brij 58 has been shown to produce 100% sealed inside-out vesicles of plant plasma membranes (Johansson et al. 1995, Plant J. 7: 165–173) and this was also the case for plasma membranes from the green alga Chlamydomonas reinhardtii.  相似文献   
52.
An NADH oxidase activity of animal and plant plasma membrane is described that is stimulated by hormones and growth factors. In plasma membranes of cancer cells and tissues, the activity appears to be constitutively activated and no longer hormone responsive. With drugs that inhibit the activity, cells are unable to grow although growth inhibition may be more related to a failure of the cells to enlarge than to a direct inhibition of mitosis. The hormone-stimulated activity in plasma membranes of plants and the constitutively activated NADH oxidase in tumor cell plasma membranes is inhibited by thiol reagents whereas the basal activity is not. These findings point to a thiol involvement in the action of the activated form of the oxidase. NADH oxidase oxidation by Golgi apparatus of rat liver is inhibited by brefeldin A plus GDP. Brefeldin A is a macrolide antibiotic inhibitor of membrane trafficking. A model is presented where the NADH oxidase functions as a thiol-disulfide oxidoreductase activity involved in the formation and breakage of disulfide bonds. The thiol-disulfide interchange is postulated as being associated with physical membrane displacement as encountered in cell enlargement or in vesicle budding. The model, although speculative, does provide a basis for further experimentation to probe a potential function for this enzyme system which, under certain conditions, exhibits a hormone- and growth factor-stimulated oxidation of NADH.  相似文献   
53.
Plasma membranes of the marine cyanobacterium Spirulina subsalsa were tested for ATPase activity, and for involvement in salt stress. Transition of cells from saline to hypersaline medium enhances the respiratory activity associated with extrusion of Na+ and Cl, and persisting salt stress induces synthesis of respiratory enzymes in the plasma membranes. The membranes possess an ATPase, specific for ATP and Mg2+ and sensitive to orthovanadate and dicyclohexylcarbodiimide. Immunoblot analysis of plasma membrane polypeptides from Spirulina subsalsa with anti- Arabidopsis H+-ATPase serum identified a single polypeptide of 100 kDa, which cross-reacted with the antibodies. An unusual feature of this ATPase is a specific stimulation by Na+ ions. Prolonged adaptation of S. subsals cells to hypersaline conditions induced an increase in ATPase activity in subsequent plasma membrane preparations, as well as a higher content of the 100 kDa polypeptide. It is suggested that the ATPase investigated is an H+-pump, which is involved in extrusion of Na+ and in conferring resistance to salt stress.  相似文献   
54.
55.
A membrane preparation from rat brain catalyzed the hydrolysis of [2-3H]glycerol-labeled lysophosphatidylinositol (lysoPI) to yield monoacylglycerol (MG) and inositolphosphates. This phospholipase C activity had an optimal pH of 8.2. The membrane preparation did not require the addition of Ca2+ for its maximum activity, but the activity was inhibited by addition of 0.1 mM EDTA to the assay mixture and was restored by simultaneous addition of 0.2 mM Ca2+. The activity was found to be localized in synaptic plasma membranes prepared by Ficoll and Percoll density gradients. The phospholipase C was highly specific for lysoPI; diacylglycerol formation from phosphatidylinositol, and MG formation from lysophosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylserine were below 5% of that observed with lysoPI under the conditions used. We concluded that there is a pathway for phosphatidylinositol metabolism in brain synaptic membranes which is different from the well-characterized phosphoinositide-specific phospholipase C pathway.Abbreviations PI phosphatidylinositol - lysoPI lysophosphatidylinositol - lysoPI-PLC lysophosphoinositide-specific phospholipase C - PI-PLC phosphoinositide-specific phospholipase C - MG monoacylglycerol - PLC phospholipase C To whom to address reprint requests.  相似文献   
56.
Non-synaptosomal and synaptosomal mitochondrial membrane-linked enzymatic activities, NADH-cytochrome c reductase rotenone insensitive (marker of the outer membrane) and cytochrome oxidase (marker of the inner membrane), were measured in rat brain hippocampus and striatum immediately after and 1, 4, and 7 days following the induction of complete transient ischemia (15 min) by the four vessel occlusion method. Furthermore citrate synthetase activity was measured with and without Triton X-100 in order to qualitatively evaluate the membrane permeability. Nonsynaptosomal mitochondrial membranes showed reduction of both activities only in the late reperfusion phase: NADH-CCRRi decreased in striatal mitochondria after 4–7 days and only after 7 days in the hippocampus. COX activity decreased only in striatal mitochondria 7 days after ischemia. Non-synaptosomal mitochondrial membrane permeability did not show changes. Synaptosomal mitochondria showed a decrease of NADH-CCRRi only at 7 days of reperfusion both in hippocampus and striatum, while COX activity decreased only during ischemia and returned to normal levels in the following days in the two areas considered. In summary, free mitochondria showed insensitiveness to ischemia but they risulted damaged in the late reperfusion phase, while mitochondria from the synaptic terminal showed ischemic damage, partially restored during reperfusion. The striatal mitochondria showed a major susceptibility to ischemia/repefusion damage, showing changes earlier than the hippocampal ones.  相似文献   
57.
Synaptic plasma membranes (SPM) from the brain are known to have specific binding sites for several steroid hormones, but the mechanisms of membrane transduction of steroid signals is not understood. In this study, corticosterone was found to prevent temperature-dependent dissociation of endogenous calmodlin (CaM) from highly purified SPM from rat cerebral cortex. The steroid stabilizes Ca2+-dependent membrane binding of endogenous CaM (78% of total CaM), whereas Ca2+-independent binding of CaM (the other 22%) is not affected. The stabilization of membrane binding of endogenous CaM by corticosterone is concentration-dependent, with the maximal effect occurring at steroid concentration of 1 M. The EC50 is estimated as 130 nM, which is almost identical to the Kd of specific binding of the steroid to SPM (120 nM) reported previously. The effect in stabilizing membrane binding of CaM is specific to corticosterone and other glucocorticoids (cortisol, dexamethasone and triamcinolone); gonadal steroids (17-estradiol, progesterone and testosterone) are ineffective. Furthermore, corticosterone administration in vivo (2 mg/kg, i.p.) produced a rapid increase of CaM content in SPM, occurring within 5 min after steroid injection and persisting for at least 20 min. Since CaM mediates a variety of biochemical processes in synaptic membranes, we hypothesize that the effect of glucocorticoids in promoting membrane binding of CaM may lead to a cascade of consequences in synaptic membrane function.Special issue dedicated to Dr. Sidney Ochs.  相似文献   
58.
钆和镱对人红细胞膜脂及膜蛋白的作用   总被引:2,自引:0,他引:2  
利用荧光偏振,自旋标标顺磁共振波谱和激光拉曼技术研究了钆和镱对人红细胞膜结构和功能的影响。结果表明,低浓度的Gd3+(0.5μmol/L)对(Na++K+)-ATP酶和Mg2+-ATP酶有轻微的激活作用,而随着其浓度的增大,则明显抑制酶的活性,Gd3+与Yb3+和人红细胞膜作用后,降低膜脂流动性,并使膜蛋白酰胺I'-α螺旋振动强度减弱.  相似文献   
59.
Lipid bilayers composed of digalactosyldiacyl-glycerol (DGDG), that is, Galp1-6Galp1-3DAG, a non-ionic lipid of the thylakoid membrane of chloroplasts, aggregate in aqueous media containing mono- and divalent cations in amounts above a threshold concentration (Ct) of about 1.0, 4.7 and 10.0 mM for Ca2+, Mg2+ and Na+, respectively. In this work, we found that above Ct the DGDG membranes do not undergo fusion and that the aggregation can be reversed, or disrupted. This means that the perturbation induced by the salts results from adsorption, or complexation of the ions in the polar head of DGDG. To investigate this question, we used Fourier transform infrared (FTIR) spectroscopy to identify the molecular sites in DGDG which are modified by interaction, or adduct formation with CaCl2, MgCl2 and NaCl. We also determined whether the ions affect the intramolecular hydrogen bonding between the sn2 ester C = O and the carbon-6 of the -anomer of galactose (Gal). The major conclusions are: (i) the salts do not affect, at least directly, the, ester carbonyl region of DGDG, (ii) the most probable sites of binding, or adsorption, for the ions are the ring oxygen, and (iii) the ring hydroxyls are the sites of either ion complexation or intra- and intermolecular H-bonding in interacting DGDG membranes. Within this framework, the complexation of the ions with Gal might induce total or partial dehydration of the galactolipid headgroup and thus provides the means to overcome the repulsive hydration forces that hinder aggregation of the DGDG membranes.Abbreviations DGDG digalactosyldiacylglycerol - EDTA ethylenediaminetetracetic acid - FTIR Fourier transform infrared - Gal galactose - GIDG D-glucosyldiacylglycerol - Glyc glycerol - LHCII chloroplast light harvesting complex II - MGDG monogalactosyldiacylglycerol - PC phosphatidylcholine - PG phosphatidylglycerol - PS phosphatidylserine - SQDG sulfoquinovosyl-diacylglycerol Correspondence to: M. Fragata  相似文献   
60.
The bacterial phosphoenolpyruvate-dependent carbohydrate phosphotransferase system (PTS) consists of several proteins whose primary functions are to transport and phosphorylate their substrates. The complexity of the PTS undoubtedly reflects its additional roles in chemotaxis to PTS substrates and in regulation of other metabolic processes in the cell. The PTS permeases (Enzymes II) are the membrane-associated proteins of the PTS that sequentially recognize, transport, and phosphorylate their specific substrates in separate steps, and theEscherichia coli mannitol permease is one of the best studied of these proteins. It consists of two cytoplasmic domains (EIIA and EIIB) involved in mannitol phosphorylation and an integral membrane domain (EIIC) which is sufficient to bind mannitol, but which transports mannitol at a rate that is dependent on phosphorylation of the EIIA and EIIB domains. Recent results show that several residues in a hydrophilic, 85-residue segment of the EIIC domain are important for the binding, transport, and phosphorylation of mannitol. This segment may be at least partially exposed to the cytoplasm of the cell. A model is proposed in which this region of the EIIC domain is crucial in coupling phosphorylation of the EIIB domain to transport through the EIIC domain of the mannitol permease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号