首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1468篇
  免费   185篇
  国内免费   359篇
  2012篇
  2024年   11篇
  2023年   42篇
  2022年   42篇
  2021年   40篇
  2020年   56篇
  2019年   64篇
  2018年   68篇
  2017年   68篇
  2016年   75篇
  2015年   61篇
  2014年   74篇
  2013年   71篇
  2012年   64篇
  2011年   60篇
  2010年   60篇
  2009年   77篇
  2008年   103篇
  2007年   127篇
  2006年   81篇
  2005年   83篇
  2004年   98篇
  2003年   83篇
  2002年   73篇
  2001年   67篇
  2000年   53篇
  1999年   46篇
  1998年   51篇
  1997年   31篇
  1996年   25篇
  1995年   22篇
  1994年   11篇
  1993年   12篇
  1992年   12篇
  1991年   17篇
  1990年   16篇
  1989年   7篇
  1988年   10篇
  1987年   7篇
  1986年   7篇
  1985年   10篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1958年   1篇
排序方式: 共有2012条查询结果,搜索用时 0 毫秒
991.
Ni  Jian 《Plant Ecology》2004,174(2):217-234
Data on field biomass measurements in temperate grasslands of northern China (141 samples from 74 sites) were obtained from 23 Chinese journals, reports and books. Net primary productivity (NPP) of grasslands was estimated using three algorithms (peak live biomass, peak standing crop and maximum minus minimum live biomass), respectively, based on availability of biomass data in sites. 135 samples which have aboveground biomass (AGB) measurements, have peak AGB ranges from 20 to 2021 g m–2 (mean = 325.3) and the aboveground NPP (ANPP) ranges from 15 to 1647.1 g m–2 per year (mean = 295.7). 72 samples which have belowground biomass (BGB) measurements, have peak BGB ranges from 226.5 to 12827.5 g m–2 (mean = 3116) and the belowground NPP (BNPP) ranges from 15.8 to 12827.5 g m–2 per year (mean = 2425.6). In total 66 samples have the total NPP (TNPP), ranging from 55.3 to 13347.8 g m–2 per year (mean = 2980.3). Mean peak biomass and NPP varied from different geographical sampling locations, but they had a general rough regularity in ten grasslands. Meadow, mountain and alpine grasslands had high biomass and NPP (sometimes including saline grassland). Forested steppe, saline grassland and desert had median values. Meadowed and typical steppes had low biomass and NPP (sometimes including desert). The lowest biomass and NPP occurred in deserted steppe and stepped desert. Grassland ANPP has significant positive relationships with annual and summer precipitation as well as summer temperature (all p<0.01). However, grassland BNPP and TNPP have more significant negative relationships with summer temperature (p<0.01) than with annual temperature (p<0.05). The analysis of climate – productivity correlations implied that aboveground productivity is more controlled by rainfall, whereas belowground and total productivity is more influenced by temperature in the temperate grasslands of northern China. The present study might underestimate grassland NPP in northern China due to limitation of biomass measurements. Data on relative long-term aboveground and belowground biomass dynamics, as well as data of standing dead matter, litterfall, decomposition and turnover, are required if grassland NPP is to be more accurately estimated and the role of temperate grasslands in the regional to global carbon cycles is to be fully appreciated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
992.
Net primary production (NPP) was measured in seven black spruce (Picea mariana (Mill.) BSP)‐dominated sites comprising a boreal forest chronosequence near Thompson, Man., Canada. The sites burned between 1998 and 1850, and each contained separate well‐ and poorly drained stands. All components of NPP were measured, most for 3 consecutive years. Total NPP was low (50–100 g C m?2 yr?1) immediately after fire, highest 12–20 years after fire (332 and 521 g C m?2 yr?1 in the dry and wet stands, respectively) but 50% lower than this in the oldest stands. Tree NPP was highest 37 years after fire but 16–39% lower in older stands, and was dominated by deciduous seedlings in the young stands and by black spruce trees (>85%) in the older stands. The chronosequence was unreplicated but these results were consistent with 14 secondary sites sampled across the landscape. Bryophytes comprised a large percentage of aboveground NPP in the poorly drained stands, while belowground NPP was 0–40% of total NPP. Interannual NPP variability was greater in the youngest stands, the poorly drained stands, and for understory and detritus production. Net ecosystem production (NEP), calculated using heterotrophic soil and woody debris respiration data from previous studies in this chronosequence, implied that the youngest stands were moderate C sources (roughly, 100 g C m?2 yr?1), the middle‐aged stands relatively strong sinks (100–300 g C m?2 yr?1), and the oldest stands about neutral with respect to the atmosphere. The ecosystem approach employed in this study provided realistic estimates of chronosequence NPP and NEP, demonstrated the profound impact of wildfire on forest–atmosphere C exchange, and emphasized the need to account for soil drainage, bryophyte production, and species succession when modeling boreal forest C fluxes.  相似文献   
993.
We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leaf‐ and stand‐level CO2 exchange in model 3‐year‐old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large‐scale, controlled environments of the Biosphere 2 Laboratory. A short‐term experiment was imposed on top of continuing, long‐term CO2 treatments (43 and 120 Pa), at the end of the growing season. For the experiment, the plantations were exposed for 6–14 days to low and high VPD (0.6 and 2.5 kPa) at low and high volumetric soil moisture contents (25–39%). When system gross CO2 assimilation was corrected for leaf area, system net CO2 exchange (SNCE), integrated daily SNCE, and system respiration increased in response to elevated CO2. The increases were mainly as a result of the larger leaf area developed during growth at high CO2, before the short‐term experiment; the observed decline in responses to SMS and high VPD treatments was partly because of leaf area reduction. Elevated CO2 ameliorated the gas exchange consequences of water stress at the stand level, in all treatments. The initial slope of light response curves of stand photosynthesis (efficiency of light use by the stand) increased in response to elevated CO2 under all treatments. Leaf‐level net CO2 assimilation rate and apparent quantum efficiency were consistently higher, and stomatal conductance and transpiration were significantly lower, under high CO2 in all soil moisture and VPD combinations (except for conductance and transpiration in high soil moisture, low VPD). Comparisons of leaf‐ and stand‐level gross CO2 exchange indicated that the limitation of assimilation because of canopy light environment (in well‐irrigated stands; ratio of leaf : stand=3.2–3.5) switched to a predominantly individual leaf limitation (because of stomatal closure) in response to water stress (leaf : stand=0.8–1.3). These observations enabled a good prediction of whole stand assimilation from leaf‐level data under water‐stressed conditions; the predictive ability was less under well‐watered conditions. The data also demonstrated the need for a better understanding of the relationship between leaf water potential, leaf abscission, and stand LAI.  相似文献   
994.
The global carbon sink: a grassland perspective   总被引:24,自引:0,他引:24  
The challenge to identify the biospheric sinks for about half the total carbon emissions from fossil fuels must include a consideration of below-ground ecosystem processes as well as those more easily measured above-ground. Recent studies suggest that tropical grasslands and savannas may contribute more to the ‘missing sink’ than was previously appreciated, perhaps as much as 0.5 Pg (= 0.5 Gt) carbon per annum. The rapid increase in availability of productivity data facilitated by the Internet will be important for future scaling-up of global change responses, to establish independent lines of evidence about the location and size of carbon sinks.  相似文献   
995.
秦文华  张扬  朱永泰  徐聪  陈惠玲  朱高峰 《广西植物》2022,42(12):2157-2166
葡萄作为西北干旱区主要经济作物之一,认识其光合生产过程对种植栽培至关重要。为探究大田自然条件下葡萄光合生理特征及影响葡萄光合作用的主要影响因子,该研究于2019年6—9月测定葡萄(品种:无核白)叶片光合作用及其生理生态因子日变化,采用通径分析方法分析各因子对叶片净光合速率的直接和间接作用,确定其主要影响因子,同时在全天分时段模式下进一步分析葡萄叶片净光合速率对各生理生态因子的响应。结果表明:(1)葡萄叶片净光合速率日变化总体呈现先升高、后下降的单峰型曲线变化特征。(2)葡萄叶片净光合速率与光合有效辐射、饱和水汽压差、空气温度、气孔导度和蒸腾速率呈极显著正相关,与相对湿度和胞间CO2浓度呈极显著负相关。(3)各月影响葡萄叶片净光合速率变化的主要决定因子6月、8月和9月为蒸腾速率,而7月为气孔导度。(4)6—9月的葡萄叶片净光合速率与空气温度、光合有效辐射、饱和水汽压差的响应均呈“迟滞回环”关系,与蒸腾速率、气孔导度呈良好的线性关系(R2>0.85),与胞间CO2浓度呈指数函数关系(R2=0.53...  相似文献   
996.
Acclimation of the photosynthetic apparatus to light absorbed primarily by phycobilisomes (which transfer energy predominantly to photosystem II) or absorbed by chlorophyll a (mainly present in the antenna of photosystem I) was studied in the macroalga Palmaria palmata L. In addition, the influence of blue and yellow light, exciting chlorophyll a and phycobilisomes, respectively, ivas investigated. All results were compared to a white light control. Complementary chromatic adaptation in terms of an enhanced ratio of phycoerythrin to phycocyanin under green light conditions was observed. Red light (mainly absorbed by chlorophyll a) and green light (mainly absorbed by phycobilisomes) caused an increase of the antenna system, which was not preferentially excited. Yellow and blue light led to intermediate states comparable to each other and white light. Growth was reduced under all light qualities in comparison to white light, especially under conditions preferably exciting phycobilisomes (green light-adapted algae had a 58% lower growth rate compared to white light-adapted algae). Red and blue light-adapted algae showed maximal photosynthetic capacity with white light excitation and significantly lower values with green light excitation. In contrast, green and yellow light-adapted algae exhibited comparable photosynthetic capacities at all excitation wavelengths. Low-temperature fluorescence emission analysis showed an increase of photosystem II emission in red light-adapted algae and a decrease in green light-adapted algae. A small increase of photosystem I emission teas also found in green light-adapted algae, but this was much less than the photosystem II emission increase observed in red light-adapted algae (both compared to phycobilisome emission). Efficiency of energy transfer from phycobilisomes to photosystem II was higher in red than in green light-adapted algae. The opposite was found for the energy transfer efficiency from phycobilisomes to photosystem I. Zeaxanthin content increased in green and blue light-adapted algae compared to red, white, and yellow light-adapted algae. Results are discussed in comparison to published data on unicellular red algae and cyanobacteria.  相似文献   
997.
秦岭山地植被净初级生产力及对气候变化的响应   总被引:3,自引:0,他引:3  
基于1999~2009年的NDVI数据和气象数据,利用CASA模型对秦岭山地植被净初级生产力(Net primary productivity,NPP)进行模拟估算,并分析了秦岭NPP的时空变化特征及其对气候变化的响应。结果表明:1999~2009年11年间秦岭山地的平均年NPP为542.24 gC·m-2·a-1;研究期内秦岭NPP呈显著增长趋势(P<0.01),2008年最高(718.77 gC·m-2·a-1),2001年最低(471.78 gC·m-2·a-1);四季对全年NPP的贡献率大小依次为夏季(49.90%)>春季(26.16%)>秋季(18.87%)>冬季(5.07%);月NPP与温度和降水都显著相关,但与温度的相关性更高,月水平上温度对NPP的影响比降水大;生长季期间NPP与温度和降水的相关性在空间分布上都以正相关为主。  相似文献   
998.
Tang  H.P.  Zhang  X.S. 《Photosynthetica》1999,37(1):97-106
Discriminant analysis is an important method in multivariable statistic analysis to show what type an individual should belong to. Based on actual field photosynthetic value set obtained from our research platform, North East China Transect (NECT), a new approach, developed from the concept and principle of discriminant analysts, was proposed to distinguish C3 and C4 plants. Indices related to plant photosynthetic capacity measured by an LCA4 photosynthesis system were selected to build the discriminant model which is based on four related parameters: net photosynthetic rate, transpiration rate, stomatal conductance, and difference in temperature between leaf surface and atmosphere. Compared with other approaches, the present one is fast, straightforward, and efficient. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
999.
Responses of grassland carbon (C) cycling to climate change and land use remain a major uncertainty in model prediction of future climate. To explore the impacts of global change on ecosystem C fluxes and the consequent changes in C storage, we have conducted a field experiment with warming (+3 °C), altered precipitation (doubled and halved), and annual clipping at the end of growing seasons in a mixed‐grass prairie in Oklahoma, USA, from 2009 to 2013. Results showed that although ecosystem respiration (ER) and gross primary production (GPP) negatively responded to warming, net ecosystem exchange of CO2 (NEE) did not significantly change under warming. Doubled precipitation stimulated and halved precipitation suppressed ER and GPP equivalently, with the net outcome being unchanged in NEE. These results indicate that warming and altered precipitation do not necessarily have profound impacts on ecosystem C storage. In addition, we found that clipping enhanced NEE due to a stronger positive response of GPP compared to ER, indicating that clipping could potentially be an effective land practice that could increase C storage. No significant interactions between warming, altered precipitation, and clipping were observed. Meanwhile, we found that belowground net primary production (BNPP) in general was sensitive to climate change and land use though no significant changes were found in NPP across treatments. Moreover, negative correlations of the ER/GPP ratio with soil temperature and moisture did not differ across treatments, highlighting the roles of abiotic factors in mediating ecosystem C fluxes in this grassland. Importantly, our results suggest that belowground C cycling (e.g., BNPP) could respond to climate change with no alterations in ecosystem C storage in the same period.  相似文献   
1000.
Fire is a major disturbance in the boreal forest, and has been shown to release significant amounts of carbon (C) to the atmosphere through combustion. However, less is known about the effects on ecosystems following fire, which include reduced productivity and changes in decomposition in the decade immediately following the disturbance. In this study, we assessed the impact of fire on net primary productivity (NPP) in the North American boreal forest using a 17‐year record of satellite NDVI observations at 8‐ km spatial resolution together with a light‐use efficiency model. We identified 61 fire scars in the satellite observations using digitized fire burn perimeters from a database of large fires. We studied the postfire response of NPP by analyzing the most impacted pixel within each burned area. NPP decreased in the year following the fire by 60–260 g C m?2 yr?1 (30–80%). By comparing pre‐ and postfire observations, we estimated a mean NPP recovery period for boreal forests of about 9 years, with substantial variability among fires. We incorporated this behavior into a carbon cycle model simulation to demonstrate these effects on net ecosystem production. The disturbance resulted in a release of C to the atmosphere during the first 8 years, followed by a small, but long‐lived, sink lasting 150 years. Postfire net emissions were three times as large as from a model run without changing NPP. However, only small differences in the C cycle occurred between runs after 8 years due to the rapid recovery of NPP. We conclude by discussing the effects of fire on the long‐term continental trends in satellite NDVI observed across boreal North America during the 1980s and 1990s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号