首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3088篇
  免费   413篇
  国内免费   134篇
  2024年   4篇
  2023年   68篇
  2022年   35篇
  2021年   77篇
  2020年   125篇
  2019年   149篇
  2018年   124篇
  2017年   155篇
  2016年   159篇
  2015年   131篇
  2014年   144篇
  2013年   178篇
  2012年   121篇
  2011年   116篇
  2010年   125篇
  2009年   175篇
  2008年   190篇
  2007年   208篇
  2006年   190篇
  2005年   195篇
  2004年   155篇
  2003年   137篇
  2002年   109篇
  2001年   99篇
  2000年   98篇
  1999年   60篇
  1998年   65篇
  1997年   39篇
  1996年   40篇
  1995年   32篇
  1994年   24篇
  1993年   20篇
  1992年   12篇
  1991年   12篇
  1990年   12篇
  1989年   16篇
  1988年   7篇
  1987年   8篇
  1986年   2篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
排序方式: 共有3635条查询结果,搜索用时 31 毫秒
121.
European forests host a diversity of tree species that are increasingly threatened by fungal pathogens, which may have cascading consequences for forest ecosystems and their functioning. Previous experimental studies suggest that foliar and root pathogen abundance and disease severity decrease with increasing tree species diversity, but evidences from natural forests are rare. Here, we tested whether foliar fungal disease incidence was negatively affected by tree species diversity in different forest types across Europe. We measured the foliar fungal disease incidence on 16 different tree species in 209 plots in six European countries, representing a forest‐type gradient from the Mediterranean to boreal forests. Forest plots of single species (monoculture plots) and those with different combinations of two to five tree species (mixed species plots) were compared. Specifically, we analyzed the influence of tree species richness, functional type (conifer vs. broadleaved) and phylogenetic diversity on overall fungal disease incidence. The effect of tree species richness on disease incidence varied with latitude and functional type. Disease incidence tended to increase with tree diversity, in particular in northern latitudes. Disease incidence decreased with tree species richness in conifers, but not in broadleaved trees. However, for specific damage symptoms, no tree species richness effects were observed. Although the patterns were weak, susceptibility of forests to disease appears to depend on the forest site and tree type.  相似文献   
122.
There have been numerous attempts to synthesize the results of local‐scale biodiversity change studies, yet several geographic data gaps exist. These data gaps have hindered ecologist's ability to make strong conclusions about how local‐scale species richness is changing around the globe. Research on four of the major drivers of global change is unevenly distributed across the Earth's biomes. Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change in drivers, and the impact of drivers on biodiversity, and make recommendations for where future studies should focus their efforts. Across all drivers of change, the temperate broadleaf and mixed forests and the tropical moist broadleaf forests are the best studied. The biome–driver combinations we have identified as most critical in terms of where local‐scale species richness change studies are lacking include the following: land‐use change studies in tropical and temperate coniferous forests, species invasion and nutrient addition studies in the boreal forest, and warming studies in the boreal forest and tropics. Gaining more information on the local‐scale effects of the specific human drivers of change in these biomes will allow for better predictions of how human activity impacts species richness around the globe.  相似文献   
123.
124.
Does variation in environmental harshness explain local and regional species diversity gradients? We hypothesise that for a given life form like trees, greater harshness leads to a smaller range of traits that are viable and thereby also to lower species diversity. On the basis of a strong dependence of maximum tree height on site productivity and other measures of site quality, we propose maximum tree height as an inverse measure of environmental harshness for trees. Our results show that tree species richness is strongly positively correlated with maximum tree height across multiple spatial scales in forests of both eastern and western North America. Maximum tree height co‐varied with species richness along gradients from benign to harsh environmental conditions, which supports the hypothesis that harshness may be a general mechanism limiting local diversity and explaining diversity gradients within a biogeographic region.  相似文献   
125.
126.
127.
128.
129.
The EU 2020 Biodiversity Strategy requires the gathering of information on biodiversity to aid in monitoring progress towards its main targets. Common species are good proxies for the diversity and integrity of ecosystems, since they are key elements of the biomass, structure, functioning of ecosystems, and therefore of the supply of ecosystem services. In this sense, we aimed to develop a spatially-explicit indicator of habitat quality (HQI) at European level based on the species included in the European Common Bird Index, also grouped into their major habitat types (farmland and forest). Using species occurrences from the European Breeding Birds Atlas (at 50 km × 50 km) and the maximum entropy algorithm, we derived species distribution maps using refined occurrence data based on species ecology. This allowed us to cope with the limitations arising from modelling common and widespread species, obtaining habitat suitability maps for each species at finer spatial resolution (10 km × 10 km grid), which provided higher model accuracy. Analysis of the spatial patterns of local and relative species richness (defined as the ratio between species richness in a given location and the average richness in the regional context) for the common birds analysed demonstrated that the development of a HQI based on species richness needs to account for the regional species pool in order to make objective comparisons between regions. In this way, we proved that relative species richness compensated for the bias caused by the inherent heterogeneous patterns of the species distributions that was yielding larger local species richness in areas where most of the target species have the core of their distribution range. The method presented in this study provides a robust and innovative indicator of habitat quality which can be used to make comparisons between regions at the European scale, and therefore potentially applied to measure progress towards the EU Biodiversity Strategy targets. Finally, since species distribution models are based on breeding birds, the HQI can be also interpreted as a measure of the capacity of ecosystems to provide and maintain nursery/reproductive habitats for terrestrial species, a key maintenance and regulation ecosystem service.  相似文献   
130.
Saline lakes are threatened all over the world and their conservation has been a key issue. Various diversity indices are available for ecological status assessments, however, with poorly explored relevance and applicability in saline, alkaline pans. Therefore, traditional diversity measures (species richness and Shannon diversity) and taxonomic distinctness indices (Average [AvTD] and Variance of Taxonomic Distinctness [VarTD]) were tested in more than 100 sampling sites of 39 soda pans in Central-Europe to find sufficient indicators of the ecological condition and simultaneously to facilitate their preservation according to the modern conservation practices. Results of the analyses showed that healthy soda pan ecosystems with high level of natural stress and reduced habitat heterogeneity are characterized by low diversity diatom assemblages. In soda pans where the stress can be extremely high from natural reasons, oligopoly of closely related species can develop: the average taxonomic distinctness appeared between genus and family level. The non-DNA-sequence based phylogenetic diversity measures (AvTD and VarTD), were generally sensitive to the trophic state of the lakes, in contrast to traditional diversity metrics, which were unequivocally indicative for the special physical and chemical parameters (e.g. conductivity, pH) of the soda pans. In some cases, when the response of the diversity measures for a given environmental variable (pH, temperature) overlapped, the AvTD was found to be a more precise indicator of the environmental changes (pH) than traditional ones. The decreasing tendency of the AvTD along the intensified natural impact may be explained by the long available time for the species to adapt to these special environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号