首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2606篇
  免费   348篇
  国内免费   335篇
  2024年   14篇
  2023年   71篇
  2022年   56篇
  2021年   95篇
  2020年   113篇
  2019年   147篇
  2018年   144篇
  2017年   110篇
  2016年   127篇
  2015年   105篇
  2014年   117篇
  2013年   148篇
  2012年   98篇
  2011年   130篇
  2010年   104篇
  2009年   137篇
  2008年   150篇
  2007年   171篇
  2006年   163篇
  2005年   144篇
  2004年   113篇
  2003年   127篇
  2002年   84篇
  2001年   101篇
  2000年   93篇
  1999年   61篇
  1998年   59篇
  1997年   56篇
  1996年   34篇
  1995年   27篇
  1994年   31篇
  1993年   35篇
  1992年   16篇
  1991年   18篇
  1990年   20篇
  1989年   14篇
  1988年   8篇
  1987年   12篇
  1986年   5篇
  1985年   9篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有3289条查询结果,搜索用时 953 毫秒
121.
An increasing number of international initiatives aim to reconcile development with conservation. Crucial to successful implementation of these initiatives is a comprehensive understanding of the current ecological condition of landscapes and their spatial distributions. Here, we provide a cumulative measure of human modification of terrestrial lands based on modeling the physical extents of 13 anthropogenic stressors and their estimated impacts using spatially explicit global datasets with a median year of 2016. We quantified the degree of land modification and the amount and spatial configuration of low modified lands (i.e., natural areas relatively free from human alteration) across all ecoregions and biomes. We identified that fewer unmodified lands remain than previously reported and that most of the world is in a state of intermediate modification, with 52% of ecoregions classified as moderately modified. Given that these moderately modified ecoregions fall within critical land use thresholds, we propose that they warrant elevated attention and require proactive spatial planning to maintain biodiversity and ecosystem function before important environmental values are lost.  相似文献   
122.
123.
124.
125.
Stockpiling of cover soil can influence vegetation development following reclamation. Cover soil, comprising the upper 15–30 cm of the surface material on sites scheduled for mining, is commonly salvaged prior to mining and used directly or stockpiled for various lengths of time until it is needed. Salvaging and stockpiling causes physical, chemical, and biological changes in cover soils. In particular, stockpiling reduces the availability and vigor of vegetative propagules and seed, and can lead to increases in the abundance of some weedy species. This study uses data from monitoring plots to assess how stockpiling of cover soil impacts plant community development on reclaimed oil sands mine sites in northern Alberta. Development of plant communities differed distinctly between directly placed and stockpiled cover soil treatments even 18 years after reclamation. Direct placement of cover soil resulted in higher percent cover, species richness, and diversity. Nonmetric multidimensional scaling and multiresponse permutation procedure revealed compositional differentiation between the treatments. Indicator species analysis showed that direct placement treatment was dominated by perennial species while grasses and annual forb species dominated sites where stockpiled soil was used. Results indicate that stockpiling leads to slower vegetation recovery while direct placement of cover soil supports more rapid succession (from ruderal and annual communities to perennial communities). In addition, direct placement may be less costly than stockpiling. However, scheduling of salvage and placement remains a challenge.  相似文献   
126.
Fire as a key driver of Earth's biodiversity   总被引:1,自引:0,他引:1  
Many terrestrial ecosystems are fire prone, such that their composition and structure are largely due to their fire regime. Regions subject to regular fire have exceptionally high levels of species richness and endemism, and fire has been proposed as a major driver of their diversity, within the context of climate, resource availability and environmental heterogeneity. However, current fire‐management practices rarely take into account the ecological and evolutionary roles of fire in maintaining biodiversity. Here, we focus on the mechanisms that enable fire to act as a major ecological and evolutionary force that promotes and maintains biodiversity over numerous spatiotemporal scales. From an ecological perspective, the vegetation, topography and local weather conditions during a fire generate a landscape with spatial and temporal variation in fire‐related patches (pyrodiversity), and these produce the biotic and environmental heterogeneity that drives biodiversity across local and regional scales. There have been few empirical tests of the proposition that ‘pyrodiversity begets biodiversity’ but we show that biodiversity should peak at moderately high levels of pyrodiversity. Overall species richness is greatest immediately after fire and declines monotonically over time, with postfire successional pathways dictated by animal habitat preferences and varying lifespans among resident plants. Theory and data support the ‘intermediate disturbance hypothesis’ when mean patch species diversity is correlated with mean fire intervals. Postfire persistence, recruitment and immigration allow species with different life histories to coexist. From an evolutionary perspective, fire drives population turnover and diversification by promoting a wide range of adaptive responses to particular fire regimes. Among 39 comparisons, the number of species in 26 fire‐prone lineages is much higher than that in their non‐fire‐prone sister lineages. Fire and its byproducts may have direct mutagenic effects, producing novel genotypes that can lead to trait innovation and even speciation. A paradigm shift aimed at restoring biodiversity‐maintaining fire regimes across broad landscapes is required among the fire research and management communities. This will require ecologists and other professionals to spread the burgeoning fire‐science knowledge beyond scientific publications to the broader public, politicians and media.  相似文献   
127.
Preserving species diversity is critical to ensure ecosystem functioning; however, different components of diversity might respond to human disturbance in different ways. Similarly, trophic levels might have uncoupled responses to the same disturbance, thus ameliorating or aggravating the persistence of ecological communities. In this study, we analysed how the density, richness and evenness of flowers and pollinators respond to four levels of woodland thinning intensity (0, 30, 50 and 70% of woodland basal area removed) over 2 years in three contrasting sites. We found a mismatch in the response of flowers and pollinators to thinning. Flower density and richness had disparate responses, depending on the site and year, while evenness did not change with thinning. In contrast, pollinator density and richness, but not evenness, consistently increased with thinning among years and sites. These results suggest that thinning has a great influence on pollinators through changes in abiotic conditions and, perhaps, flower attractiveness rather than through small‐scale changes in flower density and richness. At the site where tree flowers were absent, bee pollinator community composition was impoverished, suggesting that trees provide important floral resources to pollinators. Our findings indicate that disturbance may diminish local plant abundance and richness, but pollinator abundance and richness are enhanced after intense thinning at small scales.  相似文献   
128.
Chronic anthropogenic disturbance (CAD), characterized by low-intensity but high frequency, is a major driver of environmental degradation in developing countries. CAD is a mixture of disturbance sensu stricto (DSS), that is, plant biomass removal and stress that reduces biomass production due to changes in environmental conditions. However, we still lack data on the separate effects of both components and their interaction in nature. We analyze the demographic effects of DSS and stress on two grass species in an area heavily affected by livestock raising (a widespread cause of CAD) during the last 500 year. We compared areas exposed to DSS and stress with areas without grazing but that continue experiencing a gradient of stress. Using matrix and integral projection models, we analyzed DSS and stress effects on population growth rates (λ) of two grass species and determined the relative importance of different vital rates and states for the change on λ. Disturbance and stress affected different individuals and processes. For example, changed conditions due to stress increased seedling mortality, but DSS reduced size (growth) of large plants through grazing. CAD had highly nonlinear and species-specific effects on population size structures, λ and elasticities. Such complex behavior is seemingly due to changes in the components of CAD as it intensified and synergic interactions between disturbance and stress. Given CAD's multivariate nature, these results are not surprising. Nevertheless, grouping this multitude of factors into two broad categories, namely DSS and stress, may prove a useful conceptual tool for analysis.  相似文献   
129.
130.
Recent changes to fire regimes in many regions of the world have led to renewed interest in plant flammability experiments to understand and predict the consequences of such changes. These experiments require the development of practical and standardised flammability testing protocols. The research aims were (i) to compare plant flammability assessments carried out using two different approaches, namely functional trait analysis and testing with a shoot‐level device; and (ii) to evaluate the effect of disturbances and seasonal variability on flammability. The study area was located in the Western Chaco region, Argentina, and 11 species were selected based on their representativeness in forests. We studied six functional traits related to flammability, growth habit and foliar persistence, in forests without disturbances over the three last decades as well as in disturbed forests. The seasonal variation of these functional traits was evaluated over two consecutive years. Functional trait flammability index (FI) and shoot‐level measurements followed standard protocols. Sixty per cent of the species measured presented a high to very high FI. The results of both assessment methods were significantly correlated. Both methods identified the same species as having medium flammability, but differed in regards to the most flammable species. Senegalia gilliesii was identified as the most flammable species when using functional trait analysis, whereas shoot‐level assessments found Larrea divaricata and Schinus johnstonii to be the most flammable. There were no disturbance effects on the FI but there was seasonal variation. Our results validate the use of functional traits as a predictive method of flammability testing and represent the first global effort comparing flammability obtained through functional trait analysis with empirical measurements. The significant correlation between both methods allows the selection of the one that is more appropriate for the size of the area to be evaluated and for the availability of technical resources. Abstract in Spanish is available with online material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号