首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   854篇
  免费   28篇
  国内免费   88篇
  970篇
  2024年   1篇
  2023年   5篇
  2022年   3篇
  2021年   10篇
  2020年   24篇
  2019年   21篇
  2018年   23篇
  2017年   21篇
  2016年   27篇
  2015年   19篇
  2014年   29篇
  2013年   39篇
  2012年   28篇
  2011年   22篇
  2010年   7篇
  2009年   36篇
  2008年   42篇
  2007年   48篇
  2006年   40篇
  2005年   51篇
  2004年   30篇
  2003年   27篇
  2002年   35篇
  2001年   32篇
  2000年   23篇
  1999年   23篇
  1998年   27篇
  1997年   25篇
  1996年   20篇
  1995年   18篇
  1994年   22篇
  1993年   18篇
  1992年   19篇
  1991年   20篇
  1990年   21篇
  1989年   17篇
  1988年   11篇
  1987年   18篇
  1986年   13篇
  1985年   10篇
  1984年   5篇
  1983年   6篇
  1982年   4篇
  1981年   7篇
  1980年   16篇
  1979年   6篇
  1977年   1篇
排序方式: 共有970条查询结果,搜索用时 15 毫秒
31.
137Cs示踪技术研究坡耕地黑土侵蚀和沉积特征   总被引:21,自引:1,他引:20  
准确地测定研究区137Cs背景值,建立137Cs流失量与土壤再分布速率之间的定量模型是137Cs示踪技术的关键。通过野外选择参照样地和利用热核爆炸源137Cs背景值模型来确定研究区137Cs的背景值,在此基础上用体现耕作迁移的质量平衡模型估算黑土坡耕地不同地貌部位的土壤再分布速率,并对主要参数进行敏感性分析。结果表明(1)研究区实测的137Cs背景值为2376.81±108.46Bq/m2,模型预测值为2318.4Bq/m2,模型预测远离西北核试验基地的地区较为准确。(2)研究区中坡位(坡肩和坡背)137Cs含量最低,侵蚀最为强烈,平均侵蚀速率为33.56t/(hm2·a)和21.67t/(hm2·a);坡麓和坡足则明显表现沉积,平均沉积速率为-4.93t/(hm2·a)和-24.61t/(hm2·a)。(3)模型预测的侵蚀速率与耕层质量深度(d)、张驰深度(H)正相关,而与137Cs年沉降易被迁移的比例(γ)和颗粒校正因子(P)反相关。并且,模型对参数d、p的敏感性分别高于参数H和γ。  相似文献   
32.
北京城市绿地表层土壤碳氮分布特征   总被引:12,自引:4,他引:8  
罗上华  毛齐正  马克明  邬建国 《生态学报》2014,34(20):6011-6019
在北京中心城区及周边郊区(覆盖六环路范围),采集不同类型绿地表层(0—20cm)土壤样品490份,测定了土壤有机碳、无机碳、全碳和全氮含量,探讨了城市土壤碳氮分布特征。结果表明:城市不同类型绿地土壤中碳含量差异明显,行道树土壤的有机碳、无机碳和全碳含量均显著高于其他类型绿地,而其它类型土壤有机碳含量差异不显著;居住绿地、道路绿地、单位绿地和公园绿地土壤无机碳含量显著高于生产绿地、防护绿地;城市土壤有机碳、无机碳和全碳含量与距离城市中心距离呈显著的负相关关系;与郊区土壤相比,城区绿地土壤有机碳、无机碳含量有富集的趋势,且无机碳增加更加明显;与郊区农业土壤相比,城市绿地土壤中有机碳有明显地增加趋势,说明北京的城市化在一定程度上有利于土壤碳库的累积。不同类型绿地土壤全氮含量差异不显著,城郊之间全氮含量也无显著差异,土壤全氮质量分数和碳氮比有逐渐减小的趋势,城市化对土壤氮的影响需要进一步研究。  相似文献   
33.
Branco S 《Molecular ecology》2010,19(24):5566-5576
Serpentine soils impose physiological stresses that limit plant establishment and diversity. The degree to which serpentine soils entail constraints on other organisms is, however, poorly understood. Here, I investigate the effect of serpentine soils on ectomycorrhizal (ECM) fungi by conducting a reciprocal transplant experiment, where serpentine and nonserpentine ECM fungal communities were cultured in both their native and non-native soils. Contrary to expectation, serpentine soils hosted higher fungal richness compared to nonserpentine, and most species were recovered from serpentine soil, suggesting ECM fungi are not overall specialized or strongly affected by serpentine edaphic constraints.  相似文献   
34.
With the aim to explore the possible role of phosphate-solubilizing bacteria (PSB) in phosphorus (P) cycling in agricultural soils, we isolated PSB inhabiting naturally in the sandy loam soils under chickpea cropping of Patiala (Punjab State). A total of 31 bacterial isolates showing solubilizing activities were isolated on Pikovskaya agar plates. The potent phosphate solubilizers were selected for further characterization. These isolates were shown to belong to the genera Pseudomonas and Serratia by partial sequencing analysis of their respective 16S rDNA genes. ERIC-PCR based fingerprinting was done for tracking the survival of introduced populations of the PSB during mass inoculation of these strains under chickpea plots. The results showed positive correlation (r2 = 0.853) among soil phosphatase activity and phosphate solubilizers population, which was also positively correlated (r2 = 0.730) to available phosphorus. Identification and characterization of soil PSB for the effective plant growth-promotion broadens the spectrum of phosphate solubilizers available for field application.  相似文献   
35.
The adaptation of plants to particular soil types has long intrigued biologists. Gypsum soils occupy large areas in many regions of the world and host a striking biological diversity, but their vegetation has been much less studied than that developing over serpentine or saline soils. Herein, we review all aspects of plant life on gypsum ecosystems, discuss the main processes driving their structure and functioning, and highlight the main conservation threats that they face. Plant communities in gypsum habitats typically show distinctive bands at very small spatial scales, which are mainly determined by topography. Plants living on gypsum soils can be classified into three categories: (i) wide gypsophiles are specialists that can penetrate the physical soil crust during early life stages and have physiological adjustments to cope with the chemical limitations imposed by gypsum soils; (ii) narrow gypsophiles are refugee plants which successfully deal with the physical soil crust and can tolerate these chemical limitations but do not show specific adaptations for this type of soils; and (iii) gypsovags are non‐specialist gypsum plants that can only thrive in gypsum soils when the physical crust is absent or reduced. Their ability to survive in gypsum soils may also be mediated by below‐ground interactions with soil microorganisms. Gypsophiles and gypsovags show efficient germination at low temperatures, seed and fruit heteromorphism within and among populations, and variation in seed dormancy among plants and populations. In gypsum ecosystems, spatio‐temporal changes in the composition and structure of above‐ground vegetation are closely related to those of the soil seed bank. Biological soil crusts (BSCs) dominated by cyanobacteria, lichens and mosses are conspicuous in gypsum environments worldwide, and are important drivers of ecosystem processes such as carbon and nitrogen cycling, water infiltration and run‐off and soil stability. These organisms are also important determinants of the structure of annual plant communities living on gypsum soils. The short‐distance seed dispersal of gypsophiles is responsible for the high number of very narrow endemisms typically found in gypsum outcrops, and suggests that these species are evolutionarily old taxa due to the time they need to colonize isolated gypsum outcrops by chance. Climate change and habitat fragmentation negatively affect both plants and BSCs in gypsum habitats, and are among the major threats to these ecosystems. Gypsum habitats and specialists offer the chance to advance our knowledge on restrictive soils, and are ideal models not only to test important evolutionary questions such as tolerance to low Ca/Mg proportions in soils, but also to improve the theoretical framework of community ecology and ecosystem functioning.  相似文献   
36.
Growth, tolerance and zinc and cadmium hyperaccumulation of Thlaspi caerulescens populations from three metal contaminated soils and three normal soils were compared under controlled conditions. Individuals of six populations were cultivated on five soils with increasing concentrations of zinc (50–25000 μg g−1) and cadmium (1–170 μg g−1). There was no mortality of normal soil populations in the four metal-contaminated soils, but plant growth was reduced to half that of populations from metal-contaminated soils. However, in noncontaminated soil, the growth of individuals from normal soils was greater than that of individuals from metal-contaminated soils. Individuals from normal soils concentrated three times more zinc in the aboveground biomass than those from metal-contaminated soils, but the latter accumulated twice as much cadmium. We conclude that populations of T. caerulescens from both normal and metal-contaminated soils are interesting material for phytoextraction of zinc and cadmium, but to optimize the process of phytoextraction it is necessary to combine the extraction potentials of both type of populations.  相似文献   
37.
不同农田生态系统土壤碳库管理指数的研究   总被引:22,自引:1,他引:22  
沈宏  曹志洪 《生态学报》2000,20(4):663-668
讨论不同农田生态系统的土壤活性碳库和碳库管理(CPMI),结果表明,不同农田生态系统的土壤CPMI明显受施肥、气候、土壤利用方式,耕种年限等因素的影响。供试土壤的活性碳含量范围为0.49~4.99mg/g,土壤CPMI为51.6~165。不同施肥地红壤CPMI的影响顺序为绿肥(GM)〉概肥(FYM)〉FYM-NPD〉参考(REF)〉NPK〉对照(CK),在水稻土中,共相应的影响顺序为,稻草(RSC  相似文献   
38.
Papen  H.  von Berg  R. 《Plant and Soil》1998,199(1):123-130
A Most Probable Number (MPN) method was developed allowing for the first time estimation of populations of bacteria capable of heterotrophic nitrification. The method was applied to an acidic soil of a coniferous forest exhibiting nitrate production. In this soil nitrate production was unlikely to be catalyzed by autotrophic nitrifiers, since autotrophic ammonia oxidizers never could be detected, and autotrophic nitrite oxidizers were usually not found in appreciable cell numbers. The developed MPN method is based on the demonstration of the presence/absence of nitrite/nitrate produced by heterotrophic nitrifying bacteria during growth in a complex medium (peptone-meat-extract softagar medium) containing low concentrations of agar (0.1%). Both the supply of the growing cultures in MPN test tubes with sufficient oxygen and the presence of low agar concentrations in the medium were found to be favourable for sustainable nitrite/nitrate production. The results demonstrate that in the acidic forest soil the microbial population capable of heterotrophic nitrifcation represents a significant part of the total aerobic heterotrophic population. By applying the developed MPN method, several bacterial strains of different genera not previously described to perform heterotrophic nitrification have been isolated from the soil and have been identified by bacterio-diagnostic tests.  相似文献   
39.
Many wetland restoration projects occur on former agricultural soils that have a history of disturbance and fertilization, making them prone to phosphorus (P) release upon flooding. To study the relationship between P release and hydrologic regime, we collected soil cores from three restoration wetlands and three undisturbed wetlands around Upper Klamath Lake in southern Oregon, U.S.A. Soil cores were subjected to one of three hydrologic regimes—flooded, moist, and dry—for 7.5 weeks, and P fluxes were measured upon reflooding. Soils from restoration wetlands released P upon reflooding regardless of the hydrologic regime, with the greatest releases coming from soils that had been flooded or dried. Undisturbed wetland soils released P only after drying. Patterns in P release can be explained by a combination of physical and biological processes, including the release of iron‐bound P due to anoxia in the flooded treatment and the mineralization of organic P under aerobic conditions in the dry treatment. Higher rates of soil P release from restoration wetland soils, particularly under flooded conditions, were associated with higher total P concentrations compared with undisturbed wetland soils. We conclude that maintaining moist soil is the means to minimize P release from recently flooded wetland soils. Alternatively, prolonged flooding provides a means of liberating excess labile P from former agricultural soils while minimizing continued organic P mineralization and soil subsidence.  相似文献   
40.
调查了云南省4种植被下土壤真菌总数、木霉数量及种类分布特点.森林土壤中木霉相对数量约占土壤真菌总数的3~15%,并随不同样地、采样季节及土层而异,优势种类因不同林型土壤而异.钩状木霉分布广泛,尤其在热带雨林的土壤生境中占优势.哈茨木霉和黄绿木霉则分别在季风和半湿润常绿阔叶林土壤中出现频率较高.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号