首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   478篇
  免费   298篇
  国内免费   8篇
  2024年   6篇
  2023年   11篇
  2022年   5篇
  2021年   7篇
  2020年   57篇
  2019年   61篇
  2018年   64篇
  2017年   60篇
  2016年   58篇
  2015年   81篇
  2014年   78篇
  2013年   62篇
  2012年   24篇
  2011年   35篇
  2010年   17篇
  2009年   11篇
  2008年   15篇
  2007年   14篇
  2006年   18篇
  2005年   13篇
  2004年   12篇
  2003年   9篇
  2002年   10篇
  2001年   8篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有784条查询结果,搜索用时 15 毫秒
201.
In order for the 61 kDa colicin E9 protein toxin to enter the cytoplasm of susceptible cells and kill them by hydrolysing their DNA, the colicin must interact with the outer membrane BtuB receptor and Tol translocation pathway of target cells. The translocation function is located in the N-terminal domain of the colicin molecule. (1)H, (1)H-(1)H-(15)N and (1)H-(13)C-(15)N NMR studies of intact colicin E9, its DNase domain, minimal receptor-binding domain and two N-terminal constructs containing the translocation domain showed that the region of the translocation domain that governs the interaction of colicin E9 with TolB is largely unstructured and highly flexible. Of the expected 80 backbone NH resonances of the first 83 residues of intact colicin E9, 61 were identified, with 43 of them being assigned specifically. The absence of secondary structure for these was shown through chemical shift analyses and the lack of long-range NOEs in (1)H-(1)H-(15)N NOESY spectra (tau(m)=200 ms). The enhanced flexibility of the region of the translocation domain containing the TolB box compared to the overall tumbling rate of the protein was identified from the relatively large values of backbone and tryptophan indole (15)N spin-spin relaxation times, and from the negative (1)H-(15)N NOEs of the backbone NH resonances. Variable flexibility of the N-terminal region was revealed by the (15)N T(1)/T(2) ratios, which showed that the C-terminal end of the TolB box and the region immediately following it was motionally constrained compared to other parts of the N terminus. This, together with the observation of inter-residue NOEs involving Ile54, indicated that there was some structural ordering, resulting most probably from the interactions of side-chains. Conformational heterogeneity of parts of the translocation domain was evident from a multiplicity of signals for some of the residues. Im9 binding to colicin E9 had no effect on the chemical shifts or other NMR characteristics of the region of colicin E9 containing the TolB recognition sequence, though the interaction of TolB with intact colicin E9 bound to Im9 did affect resonances from this region. The flexibility of the translocation domain of colicin E9 may be connected with its need to recognise protein partners that assist it in crossing the outer membrane and in the translocation event itself.  相似文献   
202.
Synthesis and characterization of a flexible crosslinked polystyrene graftedpolyethyleneglycol (PEG) resin which allows for efficient synthesis of aggregating peptides in high yield and purity has been described. The resin showed rigidity, mechanical and chemical stability, and improved swelling and solvation characteristics essential for the successful synthesis of peptides. To demonstrate the usefulness of the new resin in polypeptide synthesis, a 4-(hydroxymethyl)phenoxyacetic acid (HMPA) handle was anchored to the free terminus of PEG and a typical hydrophobic peptide, Alzheimer's -amyloid plaque protein (33–42) fragment, was synthesized using Fmoc/t-Bu tactics. The new resin was compared with commercially available 1 mol% divinylbenzene (DVB)-crosslinked Tentagel resin under identical conditions. HPLC profiles and LC/MS analyses of the crude products revealed the high synthetic efficiency of the newly developed support. Efficiency of the resin was further illustrated by the gel-phase synthesis of a 15-residue peptide, (28–42) fragment of -amyloid protein.  相似文献   
203.
Ultrafine copper nanopalm tree‐like frameworks conformally decorated with iron oxide (Cu NPF@Fe2O3) are prepared by a facile electrodeposition method utilizing bromine ions as unique anisotropic growth catalysts. The formation mechanism and control over Cu growth are comprehensively investigated under various conditions to provide a guideline for fabricating a Cu nanoarchitecture via electrochemical methods. The optimized Cu NPFs exhibit ultrathin (<90 nm) and elongated (2–50 µm) branches with well‐interconnected and entangled features, which result in highly desirable attributes such as a large specific surface area (≈6.97 m2 g?1), free transfer pathway for Li+, and high electrical conductivity. The structural advantages of Cu NPF@Fe2O3 enhance the electrochemical kinetics, providing large reactivity, fast Li+/electron transfer, and structural stability during cycling, that lead to superior electrochemical Li storage performance. The resulting Cu NPF@Fe2O3 demonstrates a high specific capacity (919.5 mAh g–1 at 0.1 C), long‐term stability (801.1 mAh g–1 at 2 C, ≈120% retention after 500 cycles), and outstanding rate capability (630 mAh g–1 at 10 C).  相似文献   
204.
205.
206.
The present study evaluates the potential of a bio-inspired pulsation damper in a vane pump used in mobile hydraulic applications.Pressure pulsations caused by such positive displacement pumps can lead to malfunctions and noise in a hydraulic system.A common measure to reduce pressure pulsations is the integration of pressure pulsation dampers downstream of the pump.This type of damping measure can also be found in biology as e.g.in the human blood circulatory system.Such working principles found in living organisms offer a high potential for a biomimetic transfer into technical applications.The newly developed bio-inspired damper consists of cellular rubbers with non-linear viscoelastic material properties.In order to evaluate the new damping method,pressure pulsations were measured at two different back pressures and at a wide engine speed range of the vane pump.For further assessment,different setups,varying the stiffness of the cellular rubber materials and the damper volume,were tested.Within the tested back pressures,the pressure pulsations could be reduced by up to 40%.The developed integrated pulsation damper offers a high potential to dampen pressure pulsations of positive displacement pumps used in mobile hydraulic applications operating below 10 bar.  相似文献   
207.
208.
Although magnesiothermic reduction has attracted immense attention as a facile route for the fabrication of mass‐scale Si nanostructures for high‐capacity lithium‐ion battery applications, its low conversion yield (<50%) and the discovery of a sustainable and low‐cost precursor remain challenging. Here, an unprecedentedly high final conversion yield (>98%) of magnesiothermic reduction based on control of reaction pressure is reported. The successful use of sand as a nearly infinite and extremely low‐cost source for the high‐yield fabrication of nanostructured Si electrodes for Li‐ion batteries is demonstrated. On the basis of a step‐by‐step analysis of the material's structural, morphological, and compositional changes, a two‐step conversion reaction mechanism is proposed that can clearly explain the phase behavior and the high conversion yield. The excellent charge–discharge performance (specific capacities over 1500 mAh g‐1 for 100 cycles) of the hierarchical Si nanostructure suggests that this facile, fast, and high‐efficiency synthesis strategy from ultralow‐cost sand particles provides outstanding cost‐effectiveness and possible scalability for the commercialization of Si electrodes for energy‐storage applications.  相似文献   
209.
Next generation lithium battery materials will require a fundamental shift from those based on intercalation to elements or compounds that alloy directly with lithium. Intermetallics, for instance, can electrochemically alloy to Li4.4M (M = Si, Ge, Sn, etc.), providing order‐of‐magnitude increases in energy density. Unlike the stable crystal structure of intercalation materials, intermetallic‐based electrodes undergo dramatic volume changes that rapidly degrade the performance of the battery. Here, the energy density of silicon is combined with the structural reversibility of an intercalation material using a silicon/metal‐silicide multilayer. In operando X‐ray reflectivity confirms the multilayer's structural reversibility during lithium insertion and extraction, despite an overall 3.3‐fold vertical expansion. The multilayer electrodes also show enhanced long‐term cyclability and rate capabilities relative to a comparable silicon thin film electrode. This intercalation behavior found by dimensionally constraining silicon's lithiation promises applicability to a wide range of conversion reactions.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号