首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   474篇
  免费   298篇
  国内免费   8篇
  2024年   2篇
  2023年   11篇
  2022年   5篇
  2021年   7篇
  2020年   57篇
  2019年   61篇
  2018年   64篇
  2017年   60篇
  2016年   58篇
  2015年   81篇
  2014年   78篇
  2013年   62篇
  2012年   24篇
  2011年   35篇
  2010年   17篇
  2009年   11篇
  2008年   15篇
  2007年   14篇
  2006年   18篇
  2005年   13篇
  2004年   12篇
  2003年   9篇
  2002年   10篇
  2001年   8篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有780条查询结果,搜索用时 421 毫秒
191.
Design and Experiments of a Robotic Fish Imitating Cow-Nosed Ray   总被引:1,自引:0,他引:1  
<正> The cow-nosed ray is studied as natural sample of a flapping-foil robotic fish.Body structure, motion discipline, and dynamicfoil deformation of cow-nosed ray are analyzed.Based on the analysis results, a robotic fish imitating cow-nosed ray,named Robo-ray Ⅱ, mainly composed of soft body, flexible ribs and pneumatic artificial muscles, is developed.Structure andswimming morphology of the robotic prototype are as that of a normal cow-nosed ray in nature.Key propulsion parameters ofRobo-ray Ⅱ at normal conditions, including the St Number at linear swimming, thrust coefficient at towing are studied throughexperiments.The suitable driving parameters are confirmed considering the efficiency and swimming velocity.Swimmingvelocity of 0.16 m·s~(-1)'and thrust coefficient of 0.56 in maximum are achieved in experiments.  相似文献   
192.
Protein and other antigens typically have a number of different epitopes. This presents an opportunity for designing high-affinity antibodies by connecting via a flexible peptide linker two antibody fragments recognizing non-overlapping epitopes on the same antigen. The same strategy was employed in natural and designed DNA-binding proteins. According to a previous theory, the linking enhances the antigen-binding affinity over those of the individual antibody fragments (with association constants K(A) and K(B)) by p(d(0))K(B) or p(d(0))K(A), where p(d(0))=(3/4pil(p)bL)(3/2)exp(-3d(0)(2)/4l(p)bL)(1-5l(p)/4bL+ cdots, three dots, centered ) is the probability density for the end-to-end vector of the flexible linker with L residues to have a distance d(0). The predicted affinity enhancement is found to be actually approached by a bi-specific antibody against hen egg lysozyme consisting of scFv fragments of D1.3 and HyHEL-10. The wide applicability of the theory is demonstrated by diverse examples of protein-protein interactions constrained by flexible linkers.  相似文献   
193.
A zero-gap cell with porous electrodes is a promising configuration for alkaline water electrolysis. However, gas evacuation becomes a challenge in that case, as bubbles can get trapped within the electrode's 3D structure. This work considers a number of 3D printed electrode geometries with so-called triply periodic minimal surfaces (TPMS). The latter is a mathematically defined structure that repeats itself in three dimensions with zero mean curvature, and can therefore be expected to be particularly well-suited to enhance gas evacuation. Another advantage as compared to other state-of-the-art 3D electrodes like foams or felts lies in the fact that their porosity, which determines the available surface area, and their pore size or flow channel dimensions, which determines the degree of bubble entrapment, can be varied independently. By a combined experimental and modeling approach, this work then identifies the structural parameters that direct the performance of such 3D printed TPMS geometries toward enhanced gas evacuation. It is demonstrated that an optimal combination of these parameters allows, under a forced electrolyte flow, for a reduction in cell overpotential of more than 20%. This indicates that efforts in optimizing the electrode's geometry can give a similar electrochemical performance enhancement as optimizing its electro-catalytic composition.  相似文献   
194.
The fusion of vesicular-shaped mitochondrial inner membranes was observed by a new approach which combines freeze-fracture electron microscopy and electric field-induced fusion. Results show that membrane events caused by the exposure to the electric field can be time-coordinated with sample freezing for subsequent analysis by freeze-fracture electron microscopy.  相似文献   
195.
用不同格数的玻板测定灭鼠效果的研究   总被引:2,自引:0,他引:2  
以往报道说明,在格粉板法中,用400格玻板比用100格玻板测定灭家鼠效果更准确(赵承善等,1983)。之后,又报道用12格框架计数粉区上鼠迹所占格数,计算灭鼠率(李镜辉等,1983)。为简便400格粉板法,并对不同格数玻板的准确性进行探讨,进行了本项工作。现报道如下。  相似文献   
196.
Stretchable supercapacitors have received increasing attention due to their broad applications in developing self‐powered stretchable electronics for wearable electronics, epidermal and implantable electronics, and biomedical devices that are capable of sustaining large deformations and conforming to complicated surfaces. In this work, a new type of highly stretchable and reliable supercapacitor is developed based on crumpled vertically aligned carbon nanotube (CNT) forests transferred onto an elastomer substrate with the assistance of a thermal annealing process in atmosphere environment. The crumpled CNT‐forest electrodes demonstrated good electrochemical performance and stability under either uniaxial (300%) or biaxial strains (300% × 300%) for thousands of stretching–relaxing cycles. The resulting supercapacitors can sustain a stretchability of 800% and possess a specific capacitance of 5 mF cm?2 at the scan rate of 50 mV s?1. Furthermore, the crumpled CNT‐forest electrodes can be easily decorated with impregnated metal oxide nanoparticles to improve the specific capacitance and energy density of the supercapacitors. The approach developed in this work offers an alternative strategy for developing novel stretchable energy devices with vertically aligned nanotubes or nanowires for advanced applications in stretchable, flexible, and wearable electronic systems.  相似文献   
197.
The advances of flexible electronics have raised demand for power sources with adaptability, flexibility, and multifunctionalities. Triboelectric nanogenerators are promising replacements for traditional batteries. Here, a highly soft skin‐like, transparent, and easily adaptable biomechanical energy harvester, based on a hybrid elastomer and with a polyionic hydrogel as the electrification layer and current collector, is developed. By harvesting the energy in human motion, the device generates an open‐circuit voltage of 70 V, a short‐circuit current density of 30.2 mA m?2, and a maximum power density of 2.79 W m?2 in a single‐electrode working mode. Further, it is demonstrated that the device can deliver power under bending, curling or by simple tapping when attached to human skin. In addition, the optimal counterpart of the polyionic layer with highest electronegativity difference is selected from a series of contact electrification materials based on a two‐electrode working mode, where a flexible device with the matching counterparts is investigated. Serving as ionic conductor and electrification layer, this polyionic material shows promising application in future development of self‐powered flexible electronics.  相似文献   
198.
Nakamura A  Suzawa T  Kato Y  Watanabe T 《FEBS letters》2005,579(11):2273-2276
The redox potentials of P700, the primary electron donor of photosystem (PS) I, of spinach and Thermosynechococcus elongatus were determined by means of spectroelectrochemistry with an error range of +/-2-3 mV, to find that the redox potential of P700 in T. elongatus is lower by ca. 50 mV as compared with spinach. The shift in the P700 redox potential of PS I core particles prepared by harsh detergent treatments remained to within 10 mV for both organisms. These results show that the 50 mV difference in the P700 redox potential between the two organisms is not a detergent-induced artifact but reflects an intrinsic property of each PS I.  相似文献   
199.
The biotin holoenzyme synthetases (BHS) are essential enzymes in all organisms that catalyze post-translational linkage of biotin to biotin-dependent carboxylases. The primary sequences of a large number of these enzymes are now available and homologies are found among all. The glycine-rich sequence, GRGRXG, constitutes one of the homologous regions in these enzymes and, based on its similarity to sequences found in a number of mononucleotide binding enzymes, has been proposed to function in ATP binding in the BHSs. In the Escherichia coli enzyme, the only member of the family for which a three-dimensional structure has been determined, the conserved sequence is found in a partially disordered surface loop. Mutations in the sequence have previously been isolated and characterized in vivo. In this work these single-site mutants, G115S, R118G, and R119W, of the E. coli BHS have been purified and biochemically characterized with respect to binding of small molecule substrates and the intermediate in the biotinylation reaction. Results of this characterization indicate that, rather than functioning in ATP binding, this glycine-rich sequence is required for binding the substrate biotin and the intermediate in the biotinylation reaction, biotinyl-5'-AMP. These results are of general significance for understanding structure-function relationships in biotin holoenzyme synthetases.  相似文献   
200.
Escherichia coli dihydroorotase has been crystallized in the presence of the product, L-dihydroorotate (L-DHO), and the structure refined at 1.9A resolution. The structure confirms that previously reported (PDB entry 1J79), crystallized in the presence of the substrate N-carbamyl-D,L-aspartate (D, L-CA-asp), which had a dimer in the asymmetric unit, with one subunit having the substrate, L-CA-asp bound at the active site and the other having L-DHO. Importantly, no explanation for the unusual structure was given. Our results now show that a loop comprised of residues 105-115 has different conformations in the two subunits. In the case of the L-CA-asp-bound subunit, this loop reaches in toward the active site and makes hydrogen-bonding contact with the bound substrate molecule. For the L-DHO-bound subunit, the loop faces in the opposite direction and forms part of the surface of the protein. Analysis of the kinetics for conversion of L-DHO to L-CA-asp at low concentrations of L-DHO shows positive cooperativity with a Hill coefficient n=1.57(+/-0.13). Communication between subunits in the dimer may occur via cooperative conformational changes of the side-chains of a tripeptide from each subunit: Arg256-His257-Arg258, near the subunit interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号