首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   982篇
  免费   80篇
  国内免费   32篇
  2023年   16篇
  2022年   21篇
  2021年   30篇
  2020年   39篇
  2019年   40篇
  2018年   49篇
  2017年   31篇
  2016年   27篇
  2015年   30篇
  2014年   33篇
  2013年   60篇
  2012年   26篇
  2011年   35篇
  2010年   28篇
  2009年   38篇
  2008年   65篇
  2007年   46篇
  2006年   33篇
  2005年   38篇
  2004年   49篇
  2003年   37篇
  2002年   30篇
  2001年   25篇
  2000年   16篇
  1999年   20篇
  1998年   18篇
  1997年   19篇
  1996年   11篇
  1995年   18篇
  1994年   16篇
  1993年   18篇
  1992年   21篇
  1991年   18篇
  1990年   13篇
  1989年   16篇
  1988年   9篇
  1987年   4篇
  1986年   5篇
  1985年   10篇
  1984年   8篇
  1983年   4篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   4篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1094条查询结果,搜索用时 15 毫秒
81.
Aims: To investigate the intracellular ethanol accumulation in yeast cells by using laser tweezers Raman spectroscopy (LTRS). Methods and Results: Ethanol accumulation in individual yeast cells during aerobic fermentation triggered by excess glucose was studied using LTRS. Its amount was obtained by comparing intracellular and extracellular ethanol concentrations during initial process of ethanol production. We found that (i) yeasts start to produce ethanol within 3 min after triggering aerobic fermentation, (ii) average ratio of intracellular to extracellular ethanol is 1·54 ± 0·17 during the initial 3 h after addition of 10% (w/v) excess glucose and (iii) the accumulated intracellular ethanol is released when aerobic fermentation is stimulated with decreasing glucose concentration. Conclusions: Intracellular ethanol accumulation occurs in initial stage of a rapid aerobic fermentation and high glucose concentration may attribute to this accumulation process. Significance and Impact of the Study: This work demonstrates LTRS is a real‐time, reagent‐free, in situ technique and a powerful tool to study kinetic process of ethanol fermentation. This work also provides further information on the intracellular ethanol accumulation in yeast cells.  相似文献   
82.
Arachidonic acid derived endogenous electrophile 15d-PGJ2 has gained much attention in recent years due to its potent anti-proliferative and anti-inflammatory actions mediated through thiol modification of cysteine residues in its target proteins. Here, we show that 15d-PGJ2 at 1 μM concentration converts normal mitochondria into large elongated and interconnected mitochondria through direct binding to mitochondrial fission protein Drp1 and partial inhibition of its GTPase activity. Mitochondrial elongation induced by 15d-PGJ2 is accompanied by increased assembly of Drp1 into large oligomeric complexes through plausible intermolecular interactions. The role of decreased GTPase activity of Drp1 in the formation of large oligomeric complexes is evident when Drp1 is incubated with a non-cleavable GTP analog, GTPγS or by a mutation that inactivated GTPase activity of Drp1 (K38A). The mutation of cysteine residue (Cys644) in the GTPase effector domain, a reported target for modification by reactive electrophiles, to alanine mimicked K38A mutation induced Drp1 oligomerization and mitochondrial elongation, suggesting the importance of cysteine in GED to regulate the GTPase activity and mitochondrial morphology. Interestingly, treatment of K38A and C644A mutants with 15d-PGJ2 resulted in super oligomerization of both mutant Drp1s indicating that 15d-PGJ2 may further stabilize Drp1 oligomers formed by loss of GTPase activity through covalent modification of middle domain cysteine residues. The present study documents for the first time the regulation of a mitochondrial fission activity by a prostaglandin, which will provide clues for understanding the pathological and physiological consequences of accumulation of reactive electrophiles during oxidative stress, inflammation and degeneration.  相似文献   
83.
We showed earlier that 15 deoxy Δ12,14 prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion [1]. However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria by 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.  相似文献   
84.
Microtubules (MTs) are central to the organisation of the eukaryotic intracellular space and are involved in the control of cell morphology. For these purposes, MT polymerisation dynamics are tightly regulated. Using automated image analysis software, we investigate the spatial dependence of MT dynamics in interphase fission yeast cells with unprecedented statistical accuracy. We find that MT catastrophe frequencies (switches from polymerisation to depolymerisation) strongly depend on intracellular position. We provide evidence that compressive forces generated by MTs growing against the cell pole locally reduce MT growth velocities and enhance catastrophe frequencies. Furthermore, we find evidence for an MT length‐dependent increase in the catastrophe frequency that is mediated by kinesin‐8 proteins (Klp5/6). Given the intrinsic susceptibility of MT dynamics to compressive forces and the widespread importance of kinesin‐8 proteins, we propose that similar spatial regulation of MT dynamics plays a role in other cell types as well. In addition, our systematic and quantitative data should provide valuable input for (mathematical) models of MT organisation in living cells.  相似文献   
85.
Aim:  To determine the structure of the chimeric chromosome X of bottom-fermenting yeasts.
Methods and Results:  Eight cosmid clones carrying DNA from chromosome X of bottom-fermenting yeasts were selected by end-sequencing. Four of the cosmid clones had Saccharomyces cerevisiae (SC)-type and Saccharomyces bayanus (SB)-type chimeric ends, two had SC-type ends and two had SB-type ends. Sequencing revealed that the bottom-fermenting yeast strains in this study had four types of chromosome X: SC–SC, SC–SB, SB–SC and SB–SB. The translocation site in the chimeric chromosome is conserved among bottom-fermenting yeast strains, and was created by homologous recombination within a region of high sequence identity between the SC-type sequence and the SB-type sequence.
Conclusions:  Existing bottom-fermenting yeast strains share a common ancestor in which the chimeric chromosome X was generated.
Significance and Impact of the Study:  The knowledge gained in this study sheds light on the evolution of bottom-fermenting yeasts.  相似文献   
86.
The selective, sensitive method of analysis of ascorbic acid by high performance liquid chromatography with electrochemical detection (HPLC/EC) has been used to determine the ascorbic acid content of cell extracts from yeasts grown in glucose-free medium, 0.3 M D-glucose, and 0.112 M L-galactono-1,4-lactone. Saccharomyces cerevisiae (strain G-25 and its tetraploid) and a commercial baker's yeast contained less than 2 μg ascorbic acid g?1 wet wt. of cells when grown for 22 h in glucose-free medium. In 0.3 M D-glucose, only the commercial baker's yeast gave a slight increase (2–50 μg g?1 wet wt. in 22 h). In 0.112 M L-galactono-1,4-lactone, all three strains produced ascorbic acid (372–587 μg g?1 wet wt. in 22 h). Lypomyces starkeyi, a species previously reported to contain a significant amount of ascorbic acid (Heick et al., Can. J. Biochem., 47 (1972) 752), was essentially devoid of ascorbic acid under all three conditions of incubation although it did contain an HPLC/EC reactive peak (RT = 0.87 relative to ascorbic acid) that was readily oxidized by charcoal in the presence of oxygen. The identity of this new compound remains to be determined.  相似文献   
87.
The numbers of epiphytic yeasts on the leaves and flowers of 25 plant species throughout their vegetation period was determined. The numbers of yeasts on the leaves were found to change regularly throughout the year. The average dynamics for all of the plant species investigated included an increase in yeast numbers during spring and summer with the maximum in late autumn and early winter. The character of the yeasts’ dynamics depends on the ecological characteristics of the plants and the duration of the ontogenesis of their leaves and flowers. Three types of dynamics of epiphytic yeasts were revealed: year-round with an increase in autumn-winter, year-round without visible changes, and seasonal with a terminal increase for annual plants.  相似文献   
88.
The yeast Pichia guilliermondii is capable of riboflavin overproduction under iron deficiency. The rib80, hit1, and red6 mutants of this species, which exhibit impaired riboflavin regulation, are also distinguished by increased iron concentrations in the cells and mitochondria, morphological changes in the mitochondria, as well as decreased growth rates (except for red6) and respiratory activity. With sufficient iron supply, the rib80 and red6 mutations cause a 1.5–1.8-fold decrease in the activity of such Fe-S cluster proteins as aconitase and flavocytochrome b 2, whereas the hit1 mutation causes a six-fold decrease. Under iron deficiency, the activity of these enzymes was equally low in all of the studied strains.  相似文献   
89.
The signal systems of the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, coupled to heterotrimeric G-proteins and sensitive to pheromones and alimentary molecules, are prototypes of hormonal signal systems of the higher vertebrate animals and are widely used in studies on molecular mechanisms of their functioning. This review summarizes and analyzes data on structural-functional organization of the first two components of these systems—receptors of the serpentine type and heterotrimeric G-proteins; mechanisms of functional coupling of receptors and G-proteins both between each other and to other signal proteins are discussed. It has been shown that at the early stages of evolution of signaling systems, at the yeast level, various models of transduction of signals into the cell were tested; many of them differ essentially from the classic model of the three-component, G-protein-coupled signal system of the higher vertebrates.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号