首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5763篇
  免费   505篇
  国内免费   221篇
  2024年   25篇
  2023年   62篇
  2022年   56篇
  2021年   189篇
  2020年   242篇
  2019年   196篇
  2018年   166篇
  2017年   188篇
  2016年   216篇
  2015年   199篇
  2014年   221篇
  2013年   320篇
  2012年   180篇
  2011年   193篇
  2010年   194篇
  2009年   271篇
  2008年   270篇
  2007年   263篇
  2006年   226篇
  2005年   219篇
  2004年   213篇
  2003年   199篇
  2002年   209篇
  2001年   201篇
  2000年   171篇
  1999年   174篇
  1998年   178篇
  1997年   154篇
  1996年   114篇
  1995年   132篇
  1994年   109篇
  1993年   79篇
  1992年   81篇
  1991年   67篇
  1990年   101篇
  1989年   59篇
  1988年   26篇
  1987年   34篇
  1986年   24篇
  1985年   43篇
  1984年   43篇
  1983年   19篇
  1982年   35篇
  1981年   22篇
  1980年   27篇
  1979年   19篇
  1978年   20篇
  1977年   15篇
  1976年   11篇
  1975年   5篇
排序方式: 共有6489条查询结果,搜索用时 15 毫秒
941.
Monitoring on the Lowveld reaches of the Olifants River, Limpopo River System, and its Steelpoort, Blyde, Klaserie and Selati tributaries was initiated in 2009. Analysis of the 2009–2015 data from four Olifants River sites showed deterioration in the river’s ecological condition between where it enters the Lowveld and where it enters the Kruger National Park, with a slight recovery within the Kruger National Park. Physico-chemical, aquatic macroinvertebrate and fish data collected in 2009–2015 at six sites on the Steelpoort, Blyde, Klaserie and Selati tributaries of the Olifants River corroborated the ecological condition of these tributaries. The Selati was the most polluted and was in a critically modified condition, whereas the Klaserie and Steelpoort were in fair condition and the Blyde was in good condition. The Selati appeared to have a significant negative impact on the water quality, macroinvertebrates and fish of the Olifants River within the Kruger National Park.  相似文献   
942.
Muscle tissue from 63 Synodontis zambezensis collected bimonthly in 2013 at Flag Boshielo Dam were analysed for metals and metalloids in a desktop human health risk assessment. The Hazard Quotient, based on a weekly meal of 67 g of fish muscle, exceeded the maximum acceptable level of one for lead, cobalt, cadmium, mercury, arsenic and selenium. The concentrations of these elements were higher in 2013 than those recorded in 2009 and 2012 in other fish species from Flag Boshielo Dam and these may pose a long-term health risk if consumed regularly by impoverished rural communities reliant on fish as a source of protein.  相似文献   
943.
Ion channels play essential roles toward determining how neurons respond to sensory input to mediate perception and behavior. Small conductance calcium-activated potassium (SK) channels are found ubiquitously throughout the brain and have been extensively characterized both molecularly and physiologically in terms of structure and function. It is clear that SK channels are key determinants of neural excitability as they mediate important neuronal response properties such as spike frequency adaptation. However, the functional roles of the different known SK channel subtypes are not well understood. Here we review recent evidence from the electrosensory system of weakly electric fish suggesting that the function of different SK channel subtypes is to optimize the processing of independent but behaviorally relevant stimulus attributes. Indeed, natural sensory stimuli frequently consist of a fast time-varying waveform (i.e., the carrier) whose amplitude (i.e., the envelope) varies slowly and independently. We first review evidence showing how somatic SK2 channels mediate tuning and responses to carrier waveforms. We then review evidence showing how dendritic SK1 channels instead determine tuning and optimize responses to envelope waveforms based on their statistics as found in the organism's natural environment in an independent fashion. The high degree of functional homology between SK channels in electric fish and their mammalian orthologs, as well as the many important parallels between the electrosensory system and the mammalian visual, auditory, and vestibular systems, suggest that these functional roles are conserved across systems and species.  相似文献   
944.
Identifying the processes by which new phenotypes and species emerge has been a long‐standing effort in evolutionary biology. Young adaptive radiations provide a model to study patterns of morphological and ecological diversification in environmental context. Here, we use the recent radiation (ca. 12k years old) of the freshwater fish Arctic charr (Salvelinus alpinus) to identify abiotic and biotic environmental factors associated with adaptive morphological variation. Arctic charr are exceptionally diverse, and in postglacial lakes there is strong evidence of repeated parallel evolution of similar morphologies associated with foraging. We measured head depth (a trait reflecting general eco‐morphology and foraging ecology) of 1,091 individuals across 30 lake populations to test whether fish morphological variation was associated with lake bathymetry and/or ecological parameters. Across populations, we found a significant relationship between the variation in head depth of the charr and abiotic environmental characteristics: positively with ecosystem size (i.e., lake volume, surface area, depth) and negatively with the amount of littoral zone. In addition, extremely robust‐headed phenotypes tended to be associated with larger and deeper lakes. We identified no influence of co‐existing biotic community on Arctic charr trophic morphology. This study evidences the role of the extrinsic environment as a facilitator of rapid eco‐morphological diversification.  相似文献   
945.
Understanding changes in biodiversity requires the implementation of monitoring programs encompassing different dimensions of biodiversity through varying sampling techniques. In this work, fish assemblages associated with the “outer” and “inner” sides of four marinas, two at the Canary Islands and two at southern Portugal, were investigated using three complementary sampling techniques: underwater visual censuses (UVCs), baited cameras (BCs), and fish traps (FTs). We firstly investigated the complementarity of these sampling methods to describe species composition. Then, we investigated differences in taxonomic (TD), phylogenetic (PD) and functional diversity (FD) between sides of the marinas according to each sampling method. Finally, we explored the applicability/reproducibility of each sampling technique to characterize fish assemblages according to these metrics of diversity. UVCs and BCs provided complementary information, in terms of the number and abundances of species, while FTs sampled a particular assemblage. Patterns of TD, PD, and FD between sides of the marinas varied depending on the sampling method. UVC was the most cost‐efficient technique, in terms of personnel hours, and it is recommended for local studies. However, for large‐scale studies, BCs are recommended, as it covers greater spatio‐temporal scales by a lower cost. Our study highlights the need to implement complementary sampling techniques to monitor ecological change, at various dimensions of biodiversity. The results presented here will be useful for optimizing future monitoring programs.  相似文献   
946.
The Holocene evolution of eight South African coastal lakes and lagoons is examined and related to changes in fish composition over that period. Historical and current connectivity with riverine and marine environments are the primary determinants of present‐day fish assemblages in these systems. A small and remarkably consistent group of relict estuarine species have persisted in these coastal lakes and lagoons. The loss or reduction of connectivity with the sea has impacted on the diversity of marine fishes in all eight study systems, with no marine fishes occurring in those water bodies where connectivity has been completely broken (e.g. Sibaya, Groenvlei). In systems that have retained tenuous linkages with the sea (e.g., Verlorenvlei, Wilderness lakes), elements of the marine fish assemblage have persisted, especially the presence of facultative catadromous species. Freshwater fish diversity in coastal lakes and lagoons is a function of historical and present biogeography and salinity. From a freshwater biogeography perspective, the inflowing rivers of the four temperate systems reviewed here contain three or fewer native freshwater fishes, while the subtropical lakes that are fed by river systems contain up to 40 freshwater fish species. Thus, the significantly higher fish species diversity in subtropical versus temperate coastal lakes and lagoons comes as no surprise. Fish species diversity has been increased further in some systems (e.g., Groenvlei) by alien fish introductions. However, the impacts of fish introductions and translocations have not been studied in the coastal lakes and lagoons of South Africa. In these closed systems, it is probable that predation impacts on small estuarine fishes are significant. The recent alien fish introductions is an example of the growing threats to these systems during the Anthropocene, a period when human activities have had significant negative impacts and show potential to match the changes recorded during the entire Holocene.  相似文献   
947.
Predators select prey so as to maximize energy and minimize manipulation time. In order to reduce prey detection and handling time, individuals must actively select their foraging space (microhabitat) and populations exhibit morphologies that are best suited for capturing locally available prey. We explored how variation in diet correlates with habitat type, and how these factors influence key morphological structures (mouth gape, eye diameter, fin length, fin area, and pectoral fin ratio) in a common microcarnivorous cryptic reef fish species, the triplefin Helcogrammoides cunninghami. In a mensurative experiment carried out at six kelp‐dominated sites, we observed considerable differences in diet along 400 km of the Chilean coast coincident with variation in habitat availability and prey distributions. Triplefins preferred a single prey type (bivalves or barnacles) at northern sites, coincident with a low diversity of foraging habitats. In contrast, southern sites presented varied and heterogeneous habitats, where triplefin diets were more diverse and included amphipods, decapods, and cumaceans. Allometry‐corrected results indicated that some morphological structures were consistently correlated with different prey items. Specifically, large mouth gape was associated with the capture of highly mobile prey such as decapods, while small mouth gape was more associated with cumaceans and copepods. In contrast, triplefins that capture sessile prey such as hydroids tend to have larger eyes. Therefore, morphological structures co‐vary with habitat selection and prey usage in this species. Our study shows how an abundant generalist reef fish exhibits variable feeding morphologies in response to the distribution of potential habitats and prey throughout its range.  相似文献   
948.
While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e., relationships between body length, trophic position, and individual dietary specialization) of a predatory fish, brown trout (Salmo trutta). We used stable isotope and stomach content analyses to test how functional characteristics of lake fish community compositions (competition and prey availability) modulate niche shifts in terms of (i) piscivorous behavior, (ii) trophic position, and (iii) individual dietary specialization. Northern Scandinavian freshwater fish communities were used as a study system, including nine subarctic lakes with contrasting fish community configurations: (i) trout‐only systems, (ii) two‐species systems (brown trout and Arctic charr [Salvelinus alpinus] coexisting), and (iii) three‐species systems (brown trout, Arctic charr, and three‐spined sticklebacks [Gasterosteus aculeatus] coexisting). We expected that the presence of profitable small prey (stickleback) and mixed competitor–prey fish species (charr) supports early piscivory and high individual dietary specialization among trout in multispecies communities, whereas minor ontogenetic shifts were expected in trout‐only systems. From logistic regression models, the presence of a suitable prey fish species (stickleback) emerged as the principal variable determining the size at ontogenetic niche shifts. Generalized additive mixed models indicated that fish community structure shaped ontogenetic niche shifts in trout, with the strongest positive relationships between body length, trophic position, and individual dietary specialization being observed in three‐species communities. Our findings revealed that the presence of a small‐sized prey fish species (stickleback) rather than a mixed competitor–prey fish species (charr) was an important factor affecting the ontogenetic niche‐shift processes of trout. The study demonstrates that community structure may modulate the ontogenetic diet trajectories of and individual niche specialization within a top predator.  相似文献   
949.
Sexual reproduction brings together reproductive partners whose long‐term interests often differ, raising the possibility of conflict over their reproductive investment. Males that enhance maternal investment in their offspring gain fitness benefits, even if this compromises future reproductive investment by iteroparous females. When the conflict occurs at a genomic level, it may be uncovered by crossing divergent populations, as a mismatch in the coevolved patterns of paternal manipulation and maternal resistance may generate asymmetric embryonic growth. We report such an asymmetry in reciprocal crosses between populations of the fish Girardinichthys multiradiatus. We also show that a fragment of a gene which can influence embryonic growth (Insulin‐Like Growth Factor 2; igf2) exhibits a parent‐of‐origin methylation pattern, where the maternally inherited igf2 allele has much more 5′ cytosine methylation than the paternally inherited allele. Our findings suggest that male manipulation of maternal investment may have evolved in fish, while the parent‐of‐origin methylation pattern appears to be a potential candidate mechanism modulating this antagonistic coevolution process. However, disruption of other coadaptive processes cannot be ruled out, as these can lead to similar effects as conflict.  相似文献   
950.
Phenotypes can both evolve in response to, and affect, ecosystem change, but few examples of diverging ecosystem‐effect traits have been investigated. Bony armor traits of fish are good candidates for this because they evolve rapidly in some freshwater fish populations, and bone is phosphorus rich and likely to affect nutrient recycling in aquatic ecosystems. Here, we explore how ontogeny, rearing environment, and bone allocation among body parts affect the stoichiometric phenotype (i.e., stoichiometric composition of bodies and excretion) of threespine stickleback. We use two populations from distinct freshwater lineages with contrasting lateral plating phenotypes (full vs. low plating) and their hybrids, which are mostly fully plated. We found that ontogeny, rearing environment, and body condition were the most important predictors of organismal stoichiometry. Although elemental composition was similar between both populations and their hybrids, we found significant divergence in phosphorus allocation among body parts and in phosphorus excretion rates. Overall, body armor differences did not explain variation in whole body phosphorus, phosphorus allocation, or phosphorus excretion. Evolutionary divergence between these lineages in both allocation and excretion is likely to have important direct consequences for ecosystems, but may be mediated by evolution of multiple morphological or physiological traits beyond plating phenotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号