首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6777篇
  免费   580篇
  国内免费   253篇
  7610篇
  2024年   23篇
  2023年   73篇
  2022年   69篇
  2021年   199篇
  2020年   245篇
  2019年   214篇
  2018年   195篇
  2017年   204篇
  2016年   241篇
  2015年   221篇
  2014年   265篇
  2013年   346篇
  2012年   217篇
  2011年   206篇
  2010年   227篇
  2009年   306篇
  2008年   330篇
  2007年   327篇
  2006年   266篇
  2005年   268篇
  2004年   253篇
  2003年   237篇
  2002年   232篇
  2001年   238篇
  2000年   199篇
  1999年   205篇
  1998年   205篇
  1997年   181篇
  1996年   141篇
  1995年   146篇
  1994年   135篇
  1993年   107篇
  1992年   104篇
  1991年   91篇
  1990年   116篇
  1989年   76篇
  1988年   35篇
  1987年   47篇
  1986年   39篇
  1985年   58篇
  1984年   58篇
  1983年   38篇
  1982年   50篇
  1981年   30篇
  1980年   36篇
  1979年   28篇
  1978年   21篇
  1977年   20篇
  1976年   12篇
  1975年   8篇
排序方式: 共有7610条查询结果,搜索用时 15 毫秒
11.
A set of eight simple ecological and social principles is proposed that could enhance the understanding of what constitutes fish 'habitat' and, if implemented, could contribute to improved management and conservation strategies. The habitat principles are a small, interrelated sub‐set that may be coupled with additional ones to formulate comprehensive guidelines for management and conservation strategies. It is proposed that: 1) habitat can be created by keystone species and interactions among species; 2) the productivity of aquatic and riparian habitat is interlinked by reciprocal exchanges of material; 3) the riparian zone is fish habitat; 4) fishless headwater streams are inseparable from fish‐bearing rivers downstream; 5) habitats can be coupled – in rivers, lakes, estuaries and oceans, and in time; 6) habitats change over hours to centuries; 7) fish production is dynamic due to biocomplexity, in species and in habitats; 8) management and conservation strategies must evolve in response to present conditions, but especially to the anticipated future. It is contended that the long‐term resilience of native fish communities in catchments shared by humans depends on incorporating these principles into management and conservation strategies. Further, traditional strategies poorly reflect the dynamic nature of habitat, the true extent of habitat, or the intrinsic complexity in societal perspectives. Forward‐thinking fish management and conservation plans view habitat as more than water. They are multilayered, ranging from pools to catchments to ecoregions, and from hours to seasons to centuries. They embrace, as a fundamental premise, that habitat evolves through both natural and anthropogenic processes, and that patterns of change may be as important as other habitat attributes.  相似文献   
12.
Eleven microsatellites were isolated from the vairone Leuciscus souffia (Risso 1826), an endangered fish that inhabits river systems in and around the Alps in Europe. The level of genetic diversity was assessed in 29 individuals of the subspecies L. s. souffia, and their variability was further estimated in seven individuals of a different subspecies, L. s. muticellus. Eight of these microsatellite loci were also applied to seven closely related cyprinid species. Availability of the reported microsatellite loci will facilitate the investigation of population genetic structure of these species with applications for the development of conservation strategies and phylogeographical approaches.  相似文献   
13.
14.
Fish finders have already been widely available in the fishing market for a number of years.However,the sizes of these fishfinders are too big and their prices are expensive to suit for the research of robotic fish or mini-submarine.The goal of thisresearch is to propose a low-cost fish detector and classifier which suits for underwater robot or submarine as a proximity sensor.With some pre-condition in hardware and algorithms,the experimental results show that the proposed design has good per-formance,with a detection rate of 100 % and a classification rate of 94 %.Both the existing type of fish and the group behaviorcan be revealed by statistical interpretations such as hovering passion and sparse swimming mode.  相似文献   
15.
Capture and long‐distance translocation of cleaner fish to control lice infestations on marine salmonid farms has the potential to influence wild populations via overexploitation in source regions, and introgression in recipient regions. Knowledge of population genetic structure is therefore required. We studied the genetic structure of ballan wrasse, a phenotypically diverse and extensively used cleaner fish, from 18 locations in Norway and Sweden, and from Galicia, Spain, using 82 SNP markers. We detected two very distinct genetic groups in Scandinavia, northwestern and southeastern. These groups were split by a stretch of sandy beaches in southwest Norway, representing a habitat discontinuity for this rocky shore associated benthic egg‐laying species. Wrasse from Galicia were highly differentiated from all Scandinavian locations, but more similar to northwestern than southeastern locations. Distinct genetic differences were observed between sympatric spotty and plain phenotypes in Galicia, but not in Scandinavia. The mechanisms underlying the geographic patterns between phenotypes are discussed, but not identified. We conclude that extensive aquaculture‐mediated translocation of ballan wrasse from Sweden and southern Norway to western and middle Norway has the potential to mix genetically distinct populations. These results question the sustainability of the current cleaner fish practice.  相似文献   
16.
The arsenic ambient water quality criterion (AWQC) for protection of human health via ingestion of aquatic organisms is currently 0.14 μ g/L. This AWQC is derived using a bioconcentration factor (BCF) of 44, which is a consumption-weighted average based on two data points for oysters and fish that was proposed by the U.S. Environmental Protection Agency in 1980 for broad application to freshwater and marine environments. This BCF is based on the assumption that bioaccumulation is a simple linear function of the exposure concentration. In the nearly quarter of a century since this BCF was promulgated, there have been additions to the arsenic bioaccumulation database and a broader scientific understanding of bioaccumulation mechanisms and how they can be applied to estimating tissue concentrations in aquatic organisms. From this database, we identified 12 studies of arsenic bioaccumulation in freshwater fishes in order to explore differences in laboratory-generated BCFs and field-generated bioaccumulation factors (BAFs) and to assess their relationship to arsenic concentrations in water. Our analysis indicates that arsenic concentrations in tissue and arsenic BAFs may be power functions of arsenic concentration in water. A power function indicates that the highest BCF values may occur at low background levels and may decrease as environmental concentrations increase above the ambient range.  相似文献   
17.
Feigning death in the Central American cichlid Parachromis friedrichsthalii   总被引:1,自引:0,他引:1  
Feigning death, a hunting strategy in which a healthy individual acts as if it was dead to trick prey into its reach, is reported for a population of the Central American cichlid Parachromis friedrichsthalii . Possible mechanisms leading to the evolution of such a behaviour are discussed.  相似文献   
18.
Fluorescence enables the display of wavelengths that are absent in the natural environment, offering the potential to generate conspicuous colour contrasts. The marine fairy wrasse Cirrhilabrus solorensis displays prominent fluorescence in the deep red range (650–700 nm). This is remarkable because marine fishes are generally assumed to have poor sensitivity in this part of the visual spectrum. Here, we investigated whether C. solorensis males can perceive the fluorescence featured in this species by testing whether the presence or absence of red fluorescence affects male–male interactions under exclusive blue illumination. Given that males respond aggressively towards mirror-image stimuli, we quantified agonistic behaviour against mirrors covered with filters that did or did not absorb long (i.e. red) wavelengths. Males showed significantly fewer agonistic responses when their fluorescent signal was masked, independent of brightness differences. Our results unequivocally show that C. solorensis can see its deep red fluorescent coloration and that this pattern affects male–male interactions. This is the first study to demonstrate that deep red fluorescent body coloration can be perceived and has behavioural significance in a reef fish.  相似文献   
19.
Current issues in fish welfare   总被引:11,自引:0,他引:11  
Human beings may affect the welfare of fish through fisheries, aquaculture and a number of other activities. There is no agreement on just how to weigh the concern for welfare of fish against the human interests involved, but ethical frameworks exist that suggest how this might be approached. Different definitions of animal welfare focus on an animal's condition, on its subjective experience of that condition and/or on whether it can lead a natural life. These provide different, legitimate, perspectives, but the approach taken in this paper is to focus on welfare as the absence of suffering. An unresolved and controversial issue in discussions about animal welfare is whether non‐human animals exposed to adverse experiences such as physical injury or confinement experience what humans would call suffering. The neocortex, which in humans is an important part of the neural mechanism that generates the subjective experience of suffering, is lacking in fish and non‐mammalian animals, and it has been argued that its absence in fish indicates that fish cannot suffer. A strong alternative view, however, is that complex animals with sophisticated behaviour, such as fish, probably have the capacity for suffering, though this may be different in degree and kind from the human experience of this state. Recent empirical studies support this view and show that painful stimuli are, at least, strongly aversive to fish. Consequently, injury or experience of other harmful conditions is a cause for concern in terms of welfare of individual fish. There is also growing evidence that fish can experience fear‐like states and that they avoid situations in which they have experienced adverse conditions. Human activities that potentially compromise fish welfare include anthropogenic changes to the environment, commercial fisheries, recreational angling, aquaculture, ornamental fish keeping and scientific research. The resulting harm to fish welfare is a cost that must be minimized and weighed against the benefits of the activity concerned. Wild fish naturally experience a variety of adverse conditions, from attack by predators or conspecifics to starvation or exposure to poor environmental conditions. This does not make it acceptable for humans to impose such conditions on fish, but it does suggest that fish will have mechanisms to cope with these conditions and reminds us that pain responses are in some cases adaptive (for example, suppressing feeding when injured). In common with all vertebrates, fish respond to environmental challenges with a series of adaptive neuro‐endocrine adjustments that are collectively termed the stress response. These in turn induce reversible metabolic and behavioural changes that make the fish better able to overcome or avoid the challenge and are undoubtedly beneficial, in the short‐term at least. In contrast, prolonged activation of the stress response is damaging and leads to immuno‐suppression, reduced growth and reproductive dysfunction. Indicators associated with the response to chronic stress (physiological endpoints, disease status and behaviour) provide a potential source of information on the welfare status of a fish. The most reliable assessment of well‐being will be obtained by examining a range of informative measures and statistical techniques are available that enable several such measures to be combined objectively. A growing body of evidence tells us that many human activities can harm fish welfare, but that the effects depend on the species and life‐history stage concerned and are also context‐dependent. For example, in aquaculture, adverse effects related to stocking density may be eliminated if good water quality is maintained. At low densities, bad water quality may be less likely to arise whereas social interactions may cause greater welfare problems. A number of key differences between fish and birds and mammals have important implications for their welfare. Fish do not need to fuel a high body temperature, so the effects of food deprivation on welfare are not so marked. For species that live naturally in large shoals, low rather than high densities may be harmful. On the other hand, fish are in intimate contact with their environment through the huge surface area of their gills, so they are vulnerable to poor water quality and water borne pollutants. Extrapolation between taxa is dangerous and general frameworks for ensuring welfare in other vertebrate animals need to be modified before they can be usefully applied to fish. The scientific study of fish welfare is at an early stage compared with work on other vertebrates and a great deal of what we need to know is yet to be discovered. It is clearly the case that fish, though different from birds and mammals, however, are sophisticated animals, far removed from unfeeling creatures with a 15 s memory of popular misconception. A heightened appreciation of these points in those who exploit fish and in those who seek to protect them would go a long way towards improving fish welfare.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号