首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1112篇
  免费   96篇
  国内免费   55篇
  2023年   7篇
  2022年   16篇
  2021年   22篇
  2020年   37篇
  2019年   61篇
  2018年   69篇
  2017年   40篇
  2016年   32篇
  2015年   25篇
  2014年   95篇
  2013年   109篇
  2012年   73篇
  2011年   98篇
  2010年   68篇
  2009年   53篇
  2008年   80篇
  2007年   60篇
  2006年   64篇
  2005年   53篇
  2004年   34篇
  2003年   19篇
  2002年   17篇
  2001年   10篇
  2000年   4篇
  1999年   4篇
  1998年   13篇
  1997年   10篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   1篇
  1988年   5篇
  1987年   3篇
  1985年   2篇
  1984年   5篇
  1983年   6篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   7篇
  1977年   3篇
  1976年   4篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有1263条查询结果,搜索用时 15 毫秒
991.
Deubiquitination is a biochemical process that mediates the removal of ubiquitin moieties from ubiquitin-conjugated substrates. AMSH (associated molecule with the SH3 domain of STAM) is a deubiquitination enzyme that participates in the endosomal sorting of several cell-surface molecules. AMSH impairment results in missorted ubiquitinated cargoes in vitro and severe neurodegeneration in vivo, but it is not known how AMSH deficiency causes neuronal damage in the brain. Here, we demonstrate that AMSH−/− mice developed ubiquitinated protein accumulations as early as embryonic day 10 (E10), and that severe deposits were present in the brain at postnatal day 8 (P8) and P18. Interestingly, TDP-43 was found to accumulate and colocalize with glial marker-positive cells in the brain. Glutamate receptor and p62 accumulations were also found; these molecules colocalized with ubiquitinated aggregates in the brain. These data suggest that AMSH plays an important role in degrading ubiquitinated proteins and glutamate receptors in vivo. AMSH−/− mice provide an animal model for neurodegenerative diseases, which are commonly characterized by the generation of proteinaceous aggregates.  相似文献   
992.
Scaffold varied quaternized quinine and cinchonidine alkaloid derivatives were evaluated for their selective butyrylcholinesterase (BChE) inhibitory potential. Ki values were between 0.4–260.5 μM (non-competitive inhibition) while corresponding Kivalues to acetylcholinesterase (AChE) ranged from 7.0–400 μM exhibiting a 250-fold selectivity for BChE.Docking arrangements (GOLD, PLANT) revealed that the extended aromatic moieties and the quaternized nitrogen of the inhibitors were responsible for specific ππ stacking and π–cation interactions with the choline binding site and the peripheral anionic site of BChE’s active site.  相似文献   
993.
994.
995.
Zhang H  Wang J  Yi B  Zhao Y  Liu Y  Zhang K  Cai X  Sun J  Huang L  Liao Q 《Gene》2012,495(2):183-188
We investigated the relationship between BsmI/ApaI polymorphisms in vitamin D receptor gene and diabetic nephropathy in a Han Chinese population. PCR-restriction fragment length polymorphism was used to test the genotype and allele frequency of BsmI and ApaI polymorphisms in 304 patients with type 2 diabetes mellitus (DM group) and 100 control individuals (ND group). The DM group was further divided into DN0 (no diabetic nephropathy), DN1 (diabetes with small amount of albuminuria), DN2 (diabetes with large amount of albuminuria), L/NDN (late-onset DN after 5 years/no DN over the whole follow-up period of 5 years) and EDN (early-onset diabetic nephropathy occurring within first year) subgroup. We found that (1) genotype and allele frequency of BsmI polymorphism had significant difference between DM and ND group; BB+Bb genotype and B allele frequency were significantly higher in DN2 group than in ND and DN0 group; the ApaI polymorphism and allele frequency did not show any difference between DM and ND group; (2) BsmI BB+Bb genotype and B allele frequency were significantly higher in EDN group than in L/NDN group; (3) among patients with nephropathy, albumin excretion rate (AER) in 24-hour urine was significantly higher in those with BB+Bb phenotype than in those with bb phenotype (P<0.01), (4) unconditional logistic regression analysis showed that BsmI BB+Bb genotype was not only correlated with type 2 diabetic nephropathy, but also correlated with early-onset type 2 diabetic nephropathy. We conclude that the allele B (BB or Bb genotype) in vitamin D receptor gene is correlated with large amount albuminuria in the Han Chinese population with type 2 diabetes, and is probably a risk factor for early-onset diabetic nephropathy.  相似文献   
996.
Protein glycation is a nonenzymatic modification that involves pathological functions in neurological diseases. Despite the high number of studies showing accumulation of advanced end glycation products (AGEs) at clinical stage, there is a lack of knowledge about which proteins are modified, where those modifications occur, and to what extent. The goal of this study was to achieve a comprehensive characterization of proteins modified by early glycation in human cerebrospinal fluid (CSF). Approaches based on glucose diferential labeling and mass spectrometry have been applied to evaluate the glycated CSF proteome at two physiological conditions: native glucose level and in vitro high glucose content. For both purposes, detection of glycated proteins was carried out by HCD-MS2 and CID-MS3 modes after endoproteinase Glu-C digestion and boronate affinity chromatography. The abundance of glycation was assessed by protein labeling with (13)C(6)-glucose incubation. The analysis of native glycated CSF identified 111 glycation sites corresponding to 48 glycated proteins. Additionally, the in vitro high glucose level approach detected 265 glycation sites and 101 glycated proteins. The comparison of glycation levels under native and 15 mM glucose conditions showed relative concentration increases up to ten folds for some glycated proteins. This report revealed for the first time a number of key glycated CSF proteins known to be involved in neuroinflammation and neurodegenerative disorders. Altogether, the present study contains valuable and unique information, which should further help to clarify the pathological role of glycation in central nervous system pathologies. This article is part of a Special Issue entitled: Translational Proteomics.  相似文献   
997.
Human cerebrospinal fluid (CSF), produced by the choroid plexus and secreted into the brain ventricles and subarachnoid space, plays critical roles in intra-cerebral transport and the biophysical and immune protection of the brain. CSF composition provides valuable insight into soluble pathogenic bio-markers that may be diagnostic for brain disease. In these experiments we analyzed amyloid beta (Aβ) peptide and micro RNA (miRNA) abundance in CSF and in short post-mortem interval (PMI <2.1 hr) brain tissue-derived extracellular fluid (ECF) from Alzheimer’s disease (AD) and age-matched control neocortex. There was a trend for decreased abundance of Aβ42 in the CSF and ECF in AD but it did not reach statistical significance (mean age ~72 yr; N=12; p~0.06, ANOVA). The most abundant nucleic acids in AD CSF and ECF were miRNAs, and their speciation and inducibility were studied further. Fluorescent miRNA-array-based analysis indicated significant increases in miRNA-9, miRNA-125b, miRNA-146a, miRNA-155 in AD CSF and ECF (N=12; p<0.01, ANOVA). Primary human neuronal-glial (HNG) cell co-cultures stressed with AD-derived ECF also displayed an up-regulation of these miRNAs, an effect that was quenched using the anti-NF-кB agents caffeic acid phenethyl ester (CAPE) or 1-fluoro-2-[2-(4-methoxy-phenyl)-ethenyl]-benzene (CAY10512). Increases in miRNAs were confirmed independently using a highly sensitive LED-Northern dot-blot assay. Several of these NF-кB-sensitive miRNAs are known to be up-regulated in AD brain, and associate with the progressive spreading of inflammatory neurodegeneration. The results indicate that miRNA-9, miRNA-125b, miRNA-146a and miRNA-155 are CSF- and ECF-abundant, NF-кB-sensitive pro-inflammatory miRNAs, and their enrichment in circulating CSF and ECF suggest that they may be involved in the modulation or proliferation of miRNA-triggered pathogenic signaling throughout the brain and central nervous system (CNS).  相似文献   
998.
Zhang H  Wu S  Xing D 《Cellular signalling》2012,24(1):224-232
Deposition of amyloid-β-peptide (Aβ) in the brain is considered a pathological hallmark of Alzheimer's disease (AD). Our previous studies show that Yes-associated protein (YAP) is involved in the regulation of apoptosis induced by Aβ25-35 through YAP nuclear translocation and its pro-apoptotic function is mediated by its interaction with p73. In the present study, we first found that Low-power laser irradiation (LPLI) promoted YAP cytoplasmic translocation and inhibited Aβ25-35-induced YAP nuclear translocation. Moreover, the cytoplasmic translocation was in an Akt-dependent manner. Activated Akt by LPLI phosphorylated YAP on ser127 (S127) and resulted in decreasing the interaction between YAP and p73, and in suppressing the proapoptotic gene bax expression following Aβ25-35 treatment. Inhibition of Akt expression by siRNA significantly abolished the effect of LPLI. More importantly, LPLI could inhibit Aβ25-35-induced cell apoptosis through activation of Akt/YAP/p73 signaling pathway. Therefore, our findings first suggest that YAP may be a therapeutic target and these results directly point to a potential therapeutic strategy for the treatment of AD through Akt/YAP/p73 signaling pathway with LPLI.  相似文献   
999.
Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   
1000.
MicroRNAs (miRNAs) are small non-coding RNAs that control protein expression through translational inhibition or mRNA degradation. MiRNAs have been implicated in diverse biological processes such as development, proliferation, apoptosis and differentiation. Upon treatment with nerve growth factor (NGF), rat pheochromocytoma PC12 cells elicit neurite outgrowth and differentiate into neuron-like cells. NGF plays a critical role not only in neuronal differentiation but also in protection against apoptosis. In an attempt to identify NGF-regulated miRNAs in PC12 cells, we performed miRNA microarray analysis using total RNA harvested from cells treated with NGF. In response to NGF treatment, expression of 8 and 12 miRNAs were up- and down-regulated, respectively. Quantitative RT-PCR analysis of 11 out of 20 miRNAs verified increased expression of miR-181a, miR-221 and miR-326, and decreased expression of miR-106b, miR-126, miR-139-3p, miR-143, miR-210 and miR-532-3p after NGF treatment, among which miR-221 was drastically up-regulated. Functional annotation analysis of potential target genes of 7 out of 9 miRNAs excluding the passenger strands (*) revealed that NGF may regulate expression of various genes by controlling miRNA expression, including those whose functions and processes are known to be related to NGF. Overexpression of miR-221 induced neuronal differentiation of PC12 cells in the absence of NGF treatment, and also enhanced neuronal differentiation caused by low-dose NGF. Furthermore, miR-221 potentiated formation of neurite network, which was associated with increased expression of synapsin I, a marker for synapse formation. More importantly, knockdown of miR-221 expression by antagomir attenuated NGF-mediated neuronal differentiation. Finally, miR-221 decreased expression of Foxo3a and Apaf-1, both of which are known to be involved in apoptosis in PC12 cells. Our results suggest that miR-221 plays a critical role in neuronal differentiation as well as protection against apoptosis in PC12 cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号