首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1112篇
  免费   96篇
  国内免费   55篇
  2023年   7篇
  2022年   16篇
  2021年   22篇
  2020年   37篇
  2019年   61篇
  2018年   69篇
  2017年   40篇
  2016年   32篇
  2015年   25篇
  2014年   95篇
  2013年   109篇
  2012年   73篇
  2011年   98篇
  2010年   68篇
  2009年   53篇
  2008年   80篇
  2007年   60篇
  2006年   64篇
  2005年   53篇
  2004年   34篇
  2003年   19篇
  2002年   17篇
  2001年   10篇
  2000年   4篇
  1999年   4篇
  1998年   13篇
  1997年   10篇
  1996年   5篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   1篇
  1988年   5篇
  1987年   3篇
  1985年   2篇
  1984年   5篇
  1983年   6篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   7篇
  1977年   3篇
  1976年   4篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
排序方式: 共有1263条查询结果,搜索用时 31 毫秒
111.
Tetraspanins are a superfamily of transmembrane proteins implicated in cellular development, motility, and activation through their interactions with a large range of proteins and with specific membrane microdomains. The complete three-dimensional structure of the tetraspanin CD81 has been predicted by molecular modeling and from the crystallographic structure of the EC2 large extracellular domain. Periodicity of sequence conservation, homology modeling, secondary structure prediction, and protein docking were used. The transmembrane domain appears organized as a four-stranded left-handed coiled coil directly connecting to two helices of the EC2. A smaller extracellular loop EC1 contains a small largely hydrophobic beta-strand that packs in a conserved hydrophobic groove of the EC2. The palmitoylable intracellular N-terminal segment forms an amphipathic membrane-parallel helix. Structural variability occurs mainly in an hypervariable subdomain of the EC2 and in intracellular regions. Therefore, the variable interaction selectivity of tetraspanins originates both from sequence variability within structurally conserved domains and from the occurrence of small structurally variable domains. In CD81 and other tetraspanins, the numerous membrane-exposed aromatic residues are asymmetrically clustered and protrude on one side of the transmembrane domain. This may represent a functional specialization of these two sides for interactions with cholesterol, proteins, or membrane microdomains.  相似文献   
112.
In total, seven ciliate species were recorded in leaf-litter, moss and soil from a variety of sites in Slovakia for the first time: Chilophrya terricola Foissner, 1984; Holostichides typicus (Song et Wilbert, 1988) Eigner, 1994; Keronella gracilis Wiackowski, 1985; Notoxoma parabryophryides Foissner, 1993; Parafurgasonia sorex (Penard, 1922) Foissner et Adam, 1981; Paragonostomum multinucleatum Foissner, Agatha et Berger, 2002, and Territricha stramenticola Berger et Foissner, 1988. The paper deals with their distribution, ecology, and comparison with similar species. The shape and nuclear variants of Paragonostomum multinucleatum are presented and populations of P. multinucleatum and T. stramenticola are morphometrically characterized.  相似文献   
113.
114.
Liu F  Liang Z  Shi J  Yin D  El-Akkad E  Grundke-Iqbal I  Iqbal K  Gong CX 《FEBS letters》2006,580(26):6269-6274
Phosphorylation of tau protein is regulated by several kinases, especially glycogen synthase kinase 3beta (GSK-3beta), cyclin-dependent protein kinase 5 (cdk5) and cAMP-dependent protein kinase (PKA). Phosphorylation of tau by PKA primes it for phosphorylation by GSK-3beta, but the site-specific modulation of GSK-3beta-catalyzed tau phosphorylation by the prephosphorylation has not been well investigated. Here, we found that prephosphorylation by PKA promotes GSK-3beta-catalyzed tau phosphorylation at Thr181, Ser199, Ser202, Thr205, Thr217, Thr231, Ser396 and Ser422, but inhibits its phosphorylation at Thr212 and Ser404. In contrast, the prephosphorylation had no significant effect on its subsequent phosphorylation by cdk5 at Thr181, Ser199, Thr205, Thr231 and Ser422; inhibited it at Ser202, Thr212, Thr217 and Ser404; and slightly promoted it at Ser396. These studies reveal the nature of the inter-regulation of tau phosphorylation by the three major tau kinases.  相似文献   
115.
Extracellular tau is toxic to neuronal cells   总被引:4,自引:0,他引:4  
The degeneration of neurons in disorders such as Alzheimer's disease has an immediate consequence, the release of intracellular proteins into the extracellular space. One of these proteins, tau, has proven to be toxic when added to cultured neuronal cells. This toxicity varies according to the degree of protein aggregation. The addition of tau to cultured neuroblastoma cells provoked an increase in the levels of intracellular calcium, which is followed by cell death. We suggest that this phenomenon may be mediated by the interaction of tau with muscarinic receptors, which promotes the liberation of calcium from intracellular stores.  相似文献   
116.
Wang H  Zhang Q  Cai B  Li H  Sze KH  Huang ZX  Wu HM  Sun H 《FEBS letters》2006,580(3):795-800
Alzheimer's disease is characterized by progressive loss of neurons accompanied by the formation of intraneural neurofibrillary tangles and extracellular amyloid plaques. Human neuronal growth inhibitory factor, classified as metallothionein-3 (MT-3), was found to be related to the neurotrophic activity promoting cortical neuron survival and dendrite outgrowth in the cell culture studies. We have determined the solution structure of the alpha-domain of human MT-3 (residues 32-68) by multinuclear and multidimensional NMR spectroscopy in combination with the molecular dynamic simulated annealing approach. The human MT-3 shows two metal-thiolate clusters, one in the N-terminus (beta-domain) and one in the C-terminus (alpha-domain). The overall fold of the alpha-domain is similar to that of mouse MT-3. However, human MT-3 has a longer loop in the acidic hexapeptide insertion than that of mouse MT-3. Surprisingly, the backbone dynamics of the protein revealed that the beta-domain exhibits similar internal motion to the alpha-domain, although the N-terminal residues are more flexible. Our results may provide useful information for understanding the structure-function relationship of human MT-3.  相似文献   
117.
118.
Woo J  Lee C 《Gene》2012,499(1):160-162
A previous genome-wide association study (GWAS) failed to discover any nucleotide sequence variant associated with susceptibility to vascular dementia (VaD) and remained a problem of false negatives produced by a low statistical power. The current study was conducted to identify such potential false negatives and to provide comprehensive evidence for the most plausible predisposing genetic factor using large-scale Korean cohorts. We identified the gene encoding retinitis pigmentosa GTPase regulator-interacting protein 1-like (RPGRIP1L) with multiple nucleotide variants associated with susceptibility to VaD by a modest significant threshold (P<10(-4)). Genetic associations were intensively examined with its sequence variants using 207 VaD patients and 207 age- and gender-matched control subjects. Genetic association analysis with dense variants in the region associated with VaD revealed 3 variants (P<0.0017) in strong linkage. Further analysis with VaD-related phenotypes using Korean Association REsource (KARE) cohort data showed that the region of the gene was associated with alanine aminotransferase (ALT), aspartate aminotransferase (AST), and blood pressure (BP) (P<7.6×10(-4)). The current study provided the first evidence of the association between RPGRIP1L gene and susceptibility of VaD. Functional studies are needed to understand underlying biological mechanism of the genetic association.  相似文献   
119.
The mediatory role of kinins in both acute and chronic inflammation within nervous tissues has been widely described. Bradykinin, the major representative of these bioactive peptides, is one of a few mediators of inflammation that directly stimulates afferent nerves due to the broad expression of specific kinin receptors in cell types in these tissues. Moreover, kinins may be delivered to a site of injury not only after their production at the endothelium surface but also following their local production through the enzymatic degradation of kininogens at the surface of nerve cells. A strong correlation between inflammatory processes and neurodegeneration has been established. The activation of nerve cells, particularly microglia, in response to injury, trauma or infection initiates a number of reactions in the neuronal neighborhood that can lead to cell death after the prolonged action of inflammatory substances. In recent years, there has been a growing interest in the effects of kinins on neuronal destruction. In these studies, the overexpression of proteins involved in kinin generation or of kinin receptors has been observed in several neurologic disorders including neurodegenerative diseases such Alzheimer's disease and multiple sclerosis as well as disorders associated with a deficiency in cell communication such as epilepsy. This review is focused on recent findings that provide reliable evidence of the mediatory role of kinins in the inflammatory responses associated with different neurological disorders. A deeper understanding of the role of kinins in neurodegenerative diseases is likely to promote the future development of new therapeutic strategies for the control of these disorders. An example of this could be the prospective use of kinin receptor antagonists.  相似文献   
120.
C-reactive protein (CRP) and β-amyloid protein (Aβ) are involved in the development of Alzheimer's disease (AD). However, the relationship between CRP and Aβ production is unclear. In vitro and in vivo experiments were performed to investigate the association of CRP with Aβ production. Using the rat adrenal pheochromocytoma cell line (PC12 cells) to mimic neurons, cytotoxicity was evaluated by cell viability and supernatant lactate dehydrogenase (LDH) activity. The levels of amyloid precursor protein (APP), beta-site APP cleaving enzyme (BACE-1), and presenilins (PS-1 and PS-2) were investigated using real-time polymerase chain reaction and Western blotting analysis. Aβ1-42 was measured by enzyme-linked immunosorbent assay. The relevance of CRP and Aβ as well as potential mechanisms were studied using APP/PS1 transgenic (Tg) mice. Treatment with 0.5-4.0 μM CRP for 48 h decreased cell viability and increased LDH leakage in PC12 cells. Incubation with CRP at a sub-toxic concentration of 0.2 μM increased the mRNA levels of APP, BACE-1, PS-1, and PS-2, as well as Aβ1-42 production. CRP inhibitor reversed the CRP-induced upregulations of the mRNA levels of APP, BACE-1, PS-1, and PS-2, and the protein levels of APP, BACE-1, PS-1, and Aβ1-42, but did not reversed Aβ1-42 cytotoxicity. The cerebral levels of CRP and Aβ1-42 in APP/PS1 Tg mice were positively correlated, accompanied with the elevated mRNA expressions of serum amyloid P component (SAP), complement component 1q (C1q), and tumor necrosis factor-α (TNF-α). These results suggest that CRP cytotoxicity is associated with Aβ formation and Aβ-related markers expressions; CRP and Aβ were relevant in early-stage AD; CRP may be an important trigger in AD pathogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号