首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1571篇
  免费   244篇
  国内免费   162篇
  2024年   6篇
  2023年   50篇
  2022年   34篇
  2021年   50篇
  2020年   83篇
  2019年   96篇
  2018年   86篇
  2017年   74篇
  2016年   74篇
  2015年   77篇
  2014年   98篇
  2013年   100篇
  2012年   84篇
  2011年   59篇
  2010年   91篇
  2009年   98篇
  2008年   95篇
  2007年   80篇
  2006年   90篇
  2005年   93篇
  2004年   45篇
  2003年   61篇
  2002年   47篇
  2001年   48篇
  2000年   51篇
  1999年   48篇
  1998年   30篇
  1997年   28篇
  1996年   21篇
  1995年   13篇
  1994年   16篇
  1993年   10篇
  1992年   7篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有1977条查询结果,搜索用时 15 毫秒
21.
Ecosystem management in the face of global change requires understanding how co-occurring threats affect species and communities. Such an understanding allows for effective management strategies to be identified and implemented. An important component of this is differentiating between factors that are within (e.g. invasive predators) or outside (e.g. drought, large wildfires) of a local manager's control. In the global biodiversity hotspot of south-western Australia, small- and medium-sized mammal species are severely affected by anthropogenic threats and environmental disturbances, including invasive predators, fire, and declining rainfall. However, the relative importance of different drivers has not been quantified. We used data from a long-term monitoring program to fit Bayesian state-space models that estimated spatial and temporal changes in the relative abundance of four threatened mammal species: the woylie (Bettongia penicillata), chuditch (Dasyurus geoffroii), koomal (Trichosurus vulpecula) and quenda (Isoodon fusciventor). We then use Bayesian structural equation modelling to identify the direct and indirect drivers of population changes, and scenario analysis to forecast population responses to future environmental change. We found that habitat loss or conversion and reduced primary productivity (caused by rainfall declines) had greater effects on species' spatial and temporal population change than the range of fire and invasive predator (the red fox Vulpes vulpes) management actions observed in the study area. Scenario analysis revealed that a greater extent of severe fire and further rainfall declines predicted under climate change, operating in concert are likely to further reduce the abundance of these species, but may be mitigated partially by invasive predator control. Considering both historical and future drivers of population change is necessary to identify the factors that risk species recovery. Given that both anthropogenic pressures and environmental disturbances can undermine conservation efforts, managers must consider how the relative benefit of conservation actions will be shaped by ongoing global change.  相似文献   
22.
Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad-scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long-term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland–shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one-time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long-term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change.  相似文献   
23.
Productivity is strongly associated with terrestrial species richness patterns, although the mechanisms underpinning such patterns have long been debated. Despite considerable consumption of primary productivity by fire, its influence on global diversity has received relatively little study. Here we examine the sensitivity of terrestrial vertebrate biodiversity (amphibians, birds and mammals) to fire, while accounting for other drivers. We analyse global data on terrestrial vertebrate richness, net primary productivity, fire occurrence (fraction of productivity consumed) and additional influences unrelated to productivity (i.e., historical phylogenetic and area effects) on species richness. For birds, fire is associated with higher diversity, rivalling the effects of productivity on richness, and for mammals, fire's positive association with diversity is even stronger than productivity; for amphibians, in contrast, there are few clear associations. Our findings suggest an underappreciated role for fire in the generation of animal species richness and the conservation of global biodiversity.  相似文献   
24.
The effects of fire on soil‐surface carbon dioxide (CO2) efflux, FS, and microbial biomass carbon, Cmic, were studied in a wildland setting by examining 13‐year‐old postfire stands of lodgepole pine differing in tree density (< 500 to > 500 000 trees ha?1) in Yellowstone National Park (YNP). In addition, young stands were compared to mature lodgepole pine stands (~110‐year‐old) in order to estimate ecosystem recovery 13 years after a stand replacing fire. Growing season FS increased with tree density in young stands (1.0 µmol CO2 m?2 s?1 in low‐density stands, 1.8 µmol CO2 m?2 s?1 in moderate‐density stands and 2.1 µmol CO2 m?2 s?1 in high‐density stands) and with stand age (2.7 µmol CO2 m?2 s?1 in mature stands). Microbial biomass carbon in young stands did not differ with tree density and ranged from 0.2 to 0.5 mg C g?1 dry soil over the growing season; Cmic was significantly greater in mature stands (0.5–0.8 mg C g?1 dry soil). Soil‐surface CO2 efflux in young stands was correlated with biotic variables (above‐ground, below‐ground and microbial biomass), but not with abiotic variables (litter and mineral soil C and N content, bulk density and soil texture). Microbial biomass carbon was correlated with below‐ground plant biomass and not with soil carbon and nitrogen, indicating that plant activity controls not only root respiration, but Cmic pools and overall FS rates as well. These findings support recent studies that have demonstrated the prevailing importance of plants in controlling rates of FS and suggest that decomposition of older, recalcitrant soil C pools in this ecosystem is relatively unimportant 13 years after a stand replacing fire. Our results also indicate that realistic predictions and modeling of terrestrial C cycling must account for the variability in tree density and stand age that exists across the landscape as a result of natural disturbances.  相似文献   
25.
Managing the pattern of forest harvest: lessons from wildfire   总被引:1,自引:0,他引:1  
Managing forests for sustainable use requires that both the biological diversity of the forests and a viable forest industry be maintained. A current approach towards maintaining biological diversity is to pattern forest management practices after those of natural disturbance events. This paradigm hypothesizes that ecological processes will be maintained best where active management approximates natural disturbance events. The forest management model now used in most sub-boreal and boreal forests calls for regularly dispersed clearcuts no greater than 60–100 ha in size. However, the spatial characteristics of the landscape produced by this model are distinctly different from the historic pattern generated by wildfire, which was heretofore the dominant stand-replacing process in these forests. Wildfire creates a more complex landscape spatial pattern with greater range in patch size and more irregular disturbance boundaries. Individual wildfires are often over 500 ha but leave patches of unburned forest within them. The combination of these attributes is not present in recent clearcuts. Allowing a proportion of larger (i.e.>500ha) harvest units may provide distinct economic advantages that could outweight the opportunity costs of leaving some patches of forest behind. For the forest type examined, further evaluation of modelling forest harvest patterns more closely after the patterns created by wildfire is required as it may achieve a good balance and strike a suitable compromise between certain ecological and economic objectives of sustainable development.  相似文献   
26.
The impact of extensive livestock farming on the physical and chemical characteristics of the volcanic soils and on the nutrient status of green plant tissues of neotropical alpine grasslands (páramo) is studied. Soil and plant samples were taken over a one-year period at five sites with different agricultural (grazing and burning) management. In the undisturbed páramo ecosystem, soil moisture (50–250%) and organic matter content are high (7–27%) and decomposition (11–35% yr-1) and element concentrations are low. Low temperatures (max < 10°C) and phosphorus fixation by the soil (5 mg P g-1 soil) determine the low mineralization and turn-over rates.Multivariate analysis of laboratory results indicates that the season of sampling and the agricultural practice are the most important explanatory factors for variation of soil characteristics. After long-term heavy grazing, soils have a higher bulk density and a lower moisture content. The outcome of a litterbag experiment confirms the hypothesis of higher decomposition rates at grazed sites. In the intermediate (wet-dry) season, conditions were somewhat better for plant growth but the system remained nutrient limited.Surprisingly, no relation between soil density, moisture or carbon content and concentrations of available nutrients in the soil is found. This is supported by the rather uniform nutrient concentrations in green plant tissue among the sites. It is concluded therefore that the effect of burning and grazing on páramo soils is principally restricted to physical characteristics, and that differences in chemical characteristics of the soil do not cause differences in vegetation structure between grazed, burned and undisturbed sites.The Netherlands Centre for Geo-ecological Research, ICG.  相似文献   
27.
Metabolic profiling by capillary liquid chromatography-electrospray mass spectrometry was used to monitor shifts in the proferrioxamine profiles of Erwinia amylovora in response to externally supplied potential proferrioxamine precursors, selected stable-isotope-labeled precursors and atypical precursors. Based on the qualitative and quantitative shifts in the proferrioxamine profiles, lysine and arginine are unambiguous, and agmatine, ornithine, diaminobutyric acid and the corresponding C3–5 diamines are highly likely precursors for proferrioxamine biosynthesis in E. amylovora. 5-Hydroxylysine (Hyl), a recently discovered growth inhibitor for E. amylovora, suppresses proferrioxamine production. The Hyl-induced growth inhibition can be reversed by basic amino acids. The basic amino acids also partly restore proferrioxamine synthesis.Part 12 in the series Metabolites of Erwinia, for Parts 10 and 11 see Feistner (1994d) and Feistner (1995b), respectively. Presented, in part, at ALEX '93. San Francisco. October 5–7. 1993, and at the 42nd ASMS Conference. Chicago. May 29–June 3, 1994.  相似文献   
28.
Studies on the chemistry of the 2,6-dialkylpiperidines in the venom of various fire ant species have shown that these alkaloids have practical value as chemotaxonomic characters. In addition, the finding that variations exist in the distribution of the geometric isomers between species and castes has led to a hypothetical construct for the biochemical evolution of these compounds. These various results, obtained previously, are integrated here as a coherent whole.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号