首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21890篇
  免费   1667篇
  国内免费   1901篇
  2024年   45篇
  2023年   321篇
  2022年   423篇
  2021年   619篇
  2020年   650篇
  2019年   846篇
  2018年   807篇
  2017年   685篇
  2016年   672篇
  2015年   727篇
  2014年   1102篇
  2013年   1493篇
  2012年   854篇
  2011年   928篇
  2010年   797篇
  2009年   897篇
  2008年   1008篇
  2007年   1121篇
  2006年   1025篇
  2005年   933篇
  2004年   729篇
  2003年   828篇
  2002年   701篇
  2001年   579篇
  2000年   517篇
  1999年   490篇
  1998年   420篇
  1997年   407篇
  1996年   413篇
  1995年   355篇
  1994年   395篇
  1993年   384篇
  1992年   356篇
  1991年   335篇
  1990年   298篇
  1989年   259篇
  1988年   254篇
  1987年   238篇
  1986年   163篇
  1985年   219篇
  1984年   207篇
  1983年   121篇
  1982年   159篇
  1981年   132篇
  1980年   126篇
  1979年   100篇
  1978年   68篇
  1977年   53篇
  1976年   64篇
  1973年   39篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Human-induced pluripotent stem cells-derived hepatocyte-like cells (hiPSCs-HLCs) holds considerable promise for future clinical personalized therapy of liver disease. However, the low engraftment of these cells in the damaged liver microenvironment is still an obstacle for potential application. In this study, we explored the effectiveness of decellularized amniotic membrane (dAM) matrices for culturing of iPSCs and promoting their differentiation into HLCs. The DNA content assay and histological evaluation indicated that cellular and nuclear residues were efficiently eliminated and the AM extracellular matrix component was maintained during decelluarization. DAM matrices were developed as three-dimensional scaffolds and hiPSCs were seeded into these scaffolds in defined induction media. In dAM scaffolds, hiPSCs-HLCs gradually took a typical shape of hepatocytes (polygonal morphology). HiPSCs-HLCs that were cultured into dAM scaffolds showed a higher level of hepatic markers than those cultured in tissue culture plates (TCPs). Moreover, functional activities in term of albumin and urea synthesis and CYP3A activity were significantly higher in dAM scaffolds than TCPs over the same differentiation period. Thus, based on our results, dAM scaffold might have a considerable potential in liver tissue engineering, because it can improve hepatic differentiation of hiPSCs which exhibited higher level of the hepatic marker and more stable metabolic functions.  相似文献   
992.
993.
994.
Given that the effectiveness of interstitial hyperthermia for cancer treatment is related to the temperature achieved during the ablation process, there is a need for an accurate understanding of the required temperature distribution which is affected by the physical shape and form of tumours. Although a maximum peak temperature value and minimum backward heating are desired, the temperature distribution needs to be not only high but also uniformly extended over a section instead of at one peak point, especially when a roughly oval-shaped tumour is aligned with the antenna. In this case, achieving a high temperature peak destroys only the central cancerous cells after the first minutes of ablation, leaving the cells on the side alive. In this paper, a complex model was extended for the study of the heat distribution of an antenna over a porous liver composed of blood, cancerous cells, and normal tissue. Three different types of antenna were analysed: single-slot, double-slot, and dipole-tip. A novel structure made up of the single-slot antenna with a micron cut, named the micro-cut slot (MCS) antenna, was proposed and analysed. Thanks to the new structure, high uniform temperature distribution with minimum backward heating was achieved. The extended model equations, which encompass a coupled nonlinear set of transient Maxwell's electromagnetic equations, extended Darcy–Brinkman equation, and local thermal non-equilibrium equations for porous medium approximation, were solved numerically using the novel alternating direction implicit, finite–difference time–domain approach. The results showed that each type of antenna could be useful if chosen according to the shape of the tumour. In comparison with previously used antennas, the MCS antenna presented a good combination of the required goals of achieving uniform high temperature distribution and minimum backward heating.  相似文献   
995.
Abiotic stress is a major force of selection that organisms are constantly facing. While the evolutionary effects of various stressors have been broadly studied, it is only more recently that the relevance of interactions between evolution and underlying ecological conditions, that is, eco-evolutionary feedbacks, have been highlighted. Here, we experimentally investigated how populations adapt to pH-stress under high population densities. Using the protist species Tetrahymena thermophila, we studied how four different genotypes evolved in response to stressfully low pH conditions and high population densities. We found that genotypes underwent evolutionary changes, some shifting up and others shifting down their intrinsic rates of increase (r0). Overall, evolution at low pH led to the convergence of r0 and intraspecific competitive ability (α) across the four genotypes. Given the strong correlation between r0 and α, we argue that this convergence was a consequence of selection for increased density-dependent fitness at low pH under the experienced high density conditions. Increased density-dependent fitness was either attained through increase in r0, or decrease of α, depending on the genetic background. In conclusion, we show that demography can influence the direction of evolution under abiotic stress.  相似文献   
996.
The extracellular matrix of different mammalian tissues is commonly used as scaffolds in the field of tissue engineering. One of these tissues, which has frequently been studied due to its structural and biological features, is the small intestine submucosal membrane. These research are mainly done on the porcine small intestine. However, a report has recently been published about a scaffold produced from the submucosal layer of the ovine small intestine. In the present study, ovine small intestine submucosal (OSIS) was decellularized in a modified manner and its histological, morphological, and biomechanical properties were studied. Decellularization was performed in two phases: physical and chemical. In this method, a chloroform-methanol mixture, enzymatic digestion, and a constant dose of sodium dodecyl sulfate (SDS) was used in the least agitation time and its histological property and biocompatibility were evaluated in the presence of adipose tissue-derived stem cells (ADSCs); furthermore, ADSCs were isolated with a simple method (modified physical washing non-enzymatic isolation). The results were showed that the use of OSIS could be effective and operative. Mechanical properties, histological structure and shape, and glycosaminoglycan content were preserved. In the SDS-treated group, more than 90% of the native cells of tissue were deleted, and also in this group, no toxicity was observed and cell proliferation was supported, compared to the untreated group. Therefore, our results indicate that ADSCs seeded on OSIS scaffold could be used as a new approach in regenerative medicine as hybrid or hydrogel application.  相似文献   
997.
The rare ginsenosides are recognized as the functionalized molecules after the oral administration of Panax ginseng and its products. The sources of rare ginsenosides are extremely limited because of low ginsenoside contents in wild plants, hindering their application in functional foods and drugs. We developed an effective combinatorial biotechnology approach including tissue culture, immobilization, and hydrolyzation methods. Rh2 and nine other rare ginsenosides were produced by methyl jasmonate-induced culture of adventitious roots in a 10 L bioreactor associated with enzymatic hydrolysis using six β-glycosidases and their combination with yields ranging from 5.54 to 32.66 mg L−1. The yield of Rh2 was furthermore increased by 7% by using immobilized BglPm and Bgp1 in optimized pH and temperature conditions, with the highest yield reaching 51.17 mg L−1 (17.06% of protopanaxadiol-type ginsenosides mixture). Our combinatorial biotechnology method provides a highly efficient approach to acquiring diverse rare ginsenosides, replacing direct extraction from Panax plants, and can also be used to supplement yeast cell factories.  相似文献   
998.
We report on the development of a new model of alveolar air–tissue interface on a chip. The model consists of an array of suspended hexagonal monolayers of gelatin nanofibers supported by microframes and a microfluidic device for the patch integration. The suspended monolayers are deformed to a central displacement of 40–80 µm at the air–liquid interface by application of air pressure in the range of 200–1,000 Pa. With respect to the diameter of the monolayers, that is, 500 µm, this displacement corresponds to a linear strain of 2–10% in agreement with the physiological strain range in the lung alveoli. The culture of A549 cells on the monolayers for an incubation time of 1–3 days showed viability in the model. We exerted a periodic strain of 5% at a frequency of 0.2 Hz for 1 hr to the cells. We found that the cells were strongly coupled to the nanofibers, but the strain reduced the coupling and induced remodeling of the actin cytoskeleton, which led to a better tissue formation. Our model can serve as a versatile tool in lung investigations such as in inhalation toxicology and therapy.  相似文献   
999.
Trade-offs in resource selection by central-place foragers are driven by the need to balance the benefits of selecting resources against the costs of travel from the central place. For group-territorial central-place foraging birds, trade-offs in resource selection are likely to be complicated by a competitive advantage for larger groups at high group density that may limit accessibility of high-quality distant resources to small groups. We used the group-territorial, central-place foraging Red-cockaded Woodpecker Leuconotopicus borealis (RCW) as a case study to test predictions that increases in group density lead to differences in foraging distances and resource selection for groups of different sizes. We used GPS tracking and LiDAR-derived habitat data to model effects of group size on foraging distances and selection for high-quality pines (≥ 35.6 cm diameter at breast height (dbh)) and lower quality pines (25.4–35.6 cm dbh) by RCW groups across low (n = 14), moderate (n = 10) and high group density (n = 10) conditions. At low and moderate group density, all RCW groups selected distant high-quality pines in addition to those near the central place because competition for resources was low. In contrast, at high group density, larger groups travelled further to select high-quality pines, whereas smaller groups selected high-quality pines only when they were close to the central place and, conversely, were more likely to select lower quality pines at greater distances from the central place. Selection for high-quality pines only when close to the cavity tree cluster at high group density is important to long-term fitness of small RCW groups because it allows them to maximize benefits from both territorial defence and selecting high-quality resources while minimizing costs of competition. These relationships suggest that intraspecific competition at high group density entails substantive costs to smaller groups of territorial central-place foragers by limiting accessibility of distant high-quality foraging resources.  相似文献   
1000.
Mesenchymal stem cells (MSCs) are a major component of various forms of tissue engineering. MSCs have self-renewal and multidifferential potential. Osteogenic differentiation of MSCs is an area of attention in bone regeneration. One form of MSCs are adipose-derived stem cells (ASCs), which can be simply harvested and differentiated into several cell lineages, such as chondrocytes, adipocytes, or osteoblasts. Due to special properties, ASCs are frequently used in vitro and in vivo bone regeneration. Identifying factors involved in osteogenic differentiation of ASCs is important for better understanding the mechanism of osteogenic differentiation. Different methods are used to stimulate osteogenesis of ASCs in literature, including common osteogenic media, growth factors, hormones, hypoxia, mechanical and chemical stimuli, genetic modification, and nanotechnology. This review article provides an overview describing the isolation procedure, characterization, properties, current methods for osteogenic differentiation of ASCs, and their basic biological mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号