首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3830篇
  免费   333篇
  国内免费   528篇
  2024年   11篇
  2023年   42篇
  2022年   66篇
  2021年   88篇
  2020年   111篇
  2019年   157篇
  2018年   143篇
  2017年   131篇
  2016年   140篇
  2015年   147篇
  2014年   187篇
  2013年   340篇
  2012年   156篇
  2011年   183篇
  2010年   148篇
  2009年   182篇
  2008年   199篇
  2007年   214篇
  2006年   182篇
  2005年   164篇
  2004年   158篇
  2003年   159篇
  2002年   151篇
  2001年   116篇
  2000年   99篇
  1999年   96篇
  1998年   85篇
  1997年   97篇
  1996年   94篇
  1995年   94篇
  1994年   69篇
  1993年   60篇
  1992年   63篇
  1991年   56篇
  1990年   23篇
  1989年   35篇
  1988年   29篇
  1987年   24篇
  1986年   30篇
  1985年   21篇
  1984年   24篇
  1983年   31篇
  1982年   20篇
  1981年   17篇
  1980年   20篇
  1979年   10篇
  1978年   3篇
  1977年   6篇
  1976年   3篇
  1973年   3篇
排序方式: 共有4691条查询结果,搜索用时 15 毫秒
131.
Two different pre-sowing techniques have been investigated for their influence in an important industrial plant, namely cotton. Priming methods are very useful for agricultural practices because they improve crop seedling establishment, especially when environmental conditions are not optimum. Pulsed electromagnetic fields have been found to promote germination and improve early growth characteristics of cotton seedlings. Such priming techniques are especially valuable in organic cultivation, where chemical compounds are prohibited. PEG treatment showed an enhancement in some measurements, however in some cases the results were not statistically different compared to control plants. In addition, PEG treatment is a sophisticated method that is far from agricultural practices and farmers. In this research, two different ages of seeds were used (1- and 2-year-old) in order to investigate the promotory effects of priming techniques. Magnetic field treatment of 15 min was found to stimulate germination percentage and to promote seeds, resulting in 85% higher values than control seeds under real field conditions. Furthermore, seeds that were treated with magnetic field performed better in terms of early-stage measurements and root characteristics.  相似文献   
132.
Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of “normal” and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the “bystander” effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for “metabolic symbiosis” between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial “lactate-shuttle”, to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as “partners” for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an “MCT4 inhibitor”. Taken together, our data provide new strategies for achieving more effective anticancer therapy. We conclude that oncogenes enable cancer cells to behave as selfish “metabolic parasites”, like foreign organisms (bacteria, fungi, viruses). Thus, we should consider treating cancer like an infectious disease, with new classes of metabolically targeted “antibiotics” to selectively starve cancer cells. Our results provide new support for the “seed and soil” hypothesis, which was first proposed in 1889 by the English surgeon, Stephen Paget.  相似文献   
133.
134.
The effect of low frequency electromagnetic fields on changes in intracellular cAMP concentrations was investigated in the frequency range 10–100 Hz using a choriocarcinoma cell line. JAr cells significantly reduce proliferation and increase β-hCG secretion upon dibutyryl cAMP and forskolin treatment after 10 days of culturing. Choriocarcinoma cells exposed to a modulation frequency of 10 Hz for 5 min change their intracellular cAMP level significantly to higher as well as to lower concentrations in half of the experimental series, respectively. At frequencies of 70 and 100 Hz levels, half of the experimental series revealed a significant decrease in cAMP levels. Long term exposure at 100 Hz for 10 days leads to a significant reduction in proliferation but not in β-hCG secretion. These results point to a modulatory effect of low frequency electromagnetic fields on intracellular cAMP levels which are dependent on the frequency window. The reduced proliferation after long term exposure at the frequency of 100 Hz, which lowers cAMP levels, is discussed.  相似文献   
135.
Cultured fibroblasts isolated from murine livers by tissue trypsinization were exposed to a static magnetic field (0.490 T) and to extremely low frequency (ELF) magnetic field (50 Hz, 0.020 T). The cultures were exposed to magnetic fields on four consecutive days for exposure times of 2, 4, 8, 16, 32, and 64 min. After such exposures and obtaining of fibroblast subcellular fractions, lipid peroxidation product—malondialdehyde (MDA) was measured. Increased peroxidation of fibroblasts' membrane structures exposed to an ELF magnetic field was observed in subcellular fractions—microsomal, mitochondrial, and nuclear. No changes in peroxidation of membrane structures were found in fibroblasts exposed to a static magnetic field.  相似文献   
136.
It was shown that the 250-fold screening of the geomagnetic field (GMF) (“zero” magnetic field with an induction of 0.2?μT) affects early embryogenesis and the reproduction capacity of mice in vivo. Pregnant NMRI mice at the zygote stage placed in this “zero” magnetic field (MF) lost the ability to bear offspring babies although their embryos developed up to the blastocyst stage without any visible deviations from the norm. The abortion of development in the “zero” MF occurred after the exit of the blastocysts from the zona pellicida and invasion into the uterus during implantation. Histological analysis indicates that possible reasons of the abnormalities of postimplantation development are a decrease in the proliferative activity of embryonic cells and the impairment of the interaction between the trophoblast and endometrium, which finally results in the resorption of embryos in the uterus.  相似文献   
137.
In the last years, the effect of extremely low-frequency electromagnetic fields (ELF-EMF) on the activity of different enzymes were investigated. Only the membrane-anchored enzymes did decrease their activity, up to 50%. In this work, the effect of ELF-EMF on bovine lung membrane carbonic anhydrase (CA) were studied. Carbonic anhydrases are a family of 14 zinc-containing isozymes catalyzing the reversible reaction: CO2+H2O = HCO3? +H+. CA differ in catalytic activity and subcellular localization. CA IV, IX, XII, XIV, and XV are membrane bound. In particular, CA IV, which is expressed in the lung, is glycosyl phosphatidyl inositol-linked to the membrane, therefore it was a candidate to inhibition by ELF-EMF. Exposure to the membranes to a field of 75 Hz frequency and different amplitudes caused CA activity to a reproducible decrease in enzymatic activity by 17% with a threshold of about 0.74 mT. The decrease in enzymatic activity was independent of the time of permanence in the field and was completely reversible. When the source of enzyme was solubilized with Triton, the field lost its effect on CA enzymatic activity, suggesting a crucial role of the membrane, as well as of the particular linkage of the enzyme to it, in determining the conditions for CA inactivation. Results are discussed in terms of the possible physiologic effects of CA inhibition in target organs.  相似文献   
138.
The aim of this study was to test if an extremely weak 1 GHz electromagnetic field (EMF), known to be in resonance with clusters of water molecules, has biological effects on human fibroblasts. We demonstrated that in an in vitro model of wound healing, this EMF can activate fibroblast migration. [3H]thymidine incorporation experiments demonstrated that the EMF could also activate fibroblast proliferation. Activation of the expression of human fibroblast growth factor 1 (HFGF1) after EMF exposure showed that molecular wound healing pathways are activated in response to this water-resonant EMF.  相似文献   
139.
140.
《Epigenetics》2013,8(4):492-502
Alterations in DNA methylation have been proposed to create a field cancerization state in the colon, where molecular alterations that predispose cells to transformation occur in histologically normal tissue. However, our understanding of the role of DNA methylation in field cancerization is limited by an incomplete characterization of the methylation state of the normal colon. In order to determine the colon’s normal methylation state, we extracted DNA from normal colon biopsies from the rectum, sigmoid, transverse, and ascending colon and assessed the methylation status of the DNA by pyrosequencing candidate loci as well as with HumanMethylation450 arrays. We found that methylation levels of repetitive elements LINE-1 and SAT-α showed minimal variability throughout the colon in contrast to other loci. Promoter methylation of EVL was highest in the rectum and progressively lower in the proximal segments, whereas ESR1 methylation was higher in older individuals. Genome-wide methylation analysis of normal DNA revealed 8388, 82, and 93 differentially methylated loci that distinguished right from left colon, males from females, and older vs. younger individuals, respectively. Although variability in methylation between biopsies and among different colon segments was minimal for repetitive elements, analyses of specific cancer-related genes as well as a genome-wide methylation analysis demonstrated differential methylation based on colon location, individual age, and gender. These studies advance our knowledge regarding the variation of DNA methylation in the normal colon, a prerequisite for future studies aimed at understanding methylation differences indicative of a colon field effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号