首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5769篇
  免费   290篇
  国内免费   233篇
  2023年   56篇
  2022年   73篇
  2021年   144篇
  2020年   145篇
  2019年   157篇
  2018年   149篇
  2017年   137篇
  2016年   126篇
  2015年   141篇
  2014年   188篇
  2013年   356篇
  2012年   154篇
  2011年   207篇
  2010年   166篇
  2009年   263篇
  2008年   293篇
  2007年   263篇
  2006年   258篇
  2005年   229篇
  2004年   226篇
  2003年   210篇
  2002年   173篇
  2001年   127篇
  2000年   141篇
  1999年   123篇
  1998年   135篇
  1997年   104篇
  1996年   123篇
  1995年   116篇
  1994年   114篇
  1993年   113篇
  1992年   96篇
  1991年   82篇
  1990年   96篇
  1989年   62篇
  1988年   81篇
  1987年   61篇
  1986年   60篇
  1985年   79篇
  1984年   86篇
  1983年   39篇
  1982年   58篇
  1981年   65篇
  1980年   49篇
  1979年   45篇
  1978年   32篇
  1977年   18篇
  1976年   19篇
  1975年   10篇
  1973年   11篇
排序方式: 共有6292条查询结果,搜索用时 250 毫秒
981.
Many bioprocesses depend on the effective formation of a biofilm on a solid support. In the present study, three different surface treatments (sandblasting, pure‐O2 plasma, and He–O2 plasma treatments) were conducted on polypropylene (PP) Pall rings used as a support in biotrickling filters for air pollution control. The intent was to modify the ring surface and/or electrochemical properties in order to possibly improve cell adhesion, wetting properties, and possibly reduce the start‐up time and increase the performance of the biotrickling filters. The surface treatments were found to generally increase the hydrophilicity and the zeta potential of the surfaces. However, the startup and performance of lab‐scale biotrickling filters packed with treated Pall rings were not significantly different than the control with untreated rings. Cell and colloid deposition experiments conducted in flow cells showed that the treated surfaces and the hydrodynamic conditions were not favorable for cell deposition indicating that there could be significant opportunities for improving packings used in environmental bioprocess applications. Biotechnol. Bioeng. 2009;103: 1060–1067. © 2009 Wiley Periodicals, Inc.  相似文献   
982.
983.
Extracellular signalling molecules play many roles in the development of higher organisms. They are used reiteratively in different tissues and stages, but the response of the receiving cells is controlled in a context dependent manner. The pattern of expression of the signalling molecule Wingless/WNT in Drosophila is extraordinarily complex. We have studied the mechanism that controls its expression and function in the outer ring of the Drosophila wing hinge. Our findings indicate that wingless expression is controlled by a dual mechanism: its initial activation requires the product of zinc finger homeodomain 2 and is subsequently repressed by the product of the gene complex elbow/no ocelli. This tight regulation restricts the activation of wingless temporally and spatially. Later in development, wingless expression is maintained by an autoregulatory loop that involves the product of homothorax. We have analyzed the phenotype of a wingless allelic combination that specifically removes the outer ring, and our results show that Wingless is required to promote local proliferation of the wing base cells. Thus, cell proliferation in the proximal-distal axis is controlled by the sequential activation of wingless in the inner ring and the outer ring at different stages of development.  相似文献   
984.
During endochondral bone formation, vascular invasion initiates the replacement of avascular cartilage by bone. We demonstrate herein that the cartilage-specific overexpression of VEGF-A164 in mice results in the hypervascularization of soft connective tissues away from cartilage. Unexpectedly, perichondrial tissue remained avascular in addition to cartilage. Hypervascularization of tissues similarly occurred when various VEGF-A isoforms were overexpressed in the chick forelimb, but also in this case perichondrial tissue and cartilage were completely devoid of vasculature. However, following bony collar formation, anti-angiogenic properties in perichondrial tissue were lost and perichondrial angiogenesis was accelerated by VEGF-A146, VEGF-A166, or VEGF-A190. Once the perichondrium was vascularized, osteoclast precursors were recruited from the circulation and the induction of MMP9 and MMP13 can be observed in parallel with the activation of TGF-β signaling. Neither perichondrial angiogenesis nor the subsequent cartilage vascularization was found to be accelerated by the non-heparin-binding VEGF-A122 or by the VEGF-A166ΔE162-R166 mutant lacking a neuropilin-binding motif. Hence, perichondrial angiogenesis is a prerequisite for subsequent cartilage vascularization and is differentially regulated by VEGF-A isoforms.  相似文献   
985.
Neural recognition molecule NB-2/contactin 5 is expressed transiently during the first postnatal week in glutamatergic neurons of the central auditory system. Here, we investigated the effect of NB-2 deficiency on the auditory brainstem in mouse. While almost all principal neurons are wrapped with the calyces of Held in the medial nucleus of the trapezoid body (MNTB) in wild type, 8% of principal neurons in NB-2 knockout (KO) mice lack the calyces of Held at postnatal day (P) 6. At P10 and P15, apoptotic principal neurons were detected in NB-2 KO mice, but not in wild type. Apoptotic cells were also increased in the ventral cochlear nucleus (VCN) of NB-2 KO mice, which contains bushy neurons projecting to the MNTB and the lateral superior olive (LSO). At the age of 1 month, the number of principal neurons in the MNTB and of glutamatergic synapses in the LSO was reduced in NB-2 KO mice. Finally, interpeak latencies for auditory brainstem response waves II-III and III-IV were significantly increased in NB-2 KO mice. Together, these findings suggest that NB-2 deficiency causes a deficit in synapse formation and then induces apoptosis in MNTB and VCN neurons, affecting auditory brainstem function.  相似文献   
986.
987.
Alexander disease is a fatal leukoencephalopathy caused by dominantly-acting coding mutations in GFAP. Previous work has also implicated elevations in absolute levels of GFAP as central to the pathogenesis of the disease. However, identification of the critical astrocyte functions that are compromised by mis-expression of GFAP has not yet been possible. To provide new tools for investigating the nature of astrocyte dysfunction in Alexander disease, we have established primary astrocyte cultures from two mouse models of Alexander disease, a transgenic that over-expresses wild type human GFAP, and a knock-in at the endogenous mouse locus that mimics a common Alexander disease mutation. We find that mutant GFAP, as well as excess wild type GFAP, promotes formation of cytoplasmic inclusions, disrupts the cytoskeleton, decreases cell proliferation, increases cell death, reduces proteasomal function, and compromises astrocyte resistance to stress.  相似文献   
988.
In some pathological conditions such as Duchenne muscular dystrophy, it has been known that a fatty infiltration in skeletal muscle is often observed and that is also one of primary factors to induce marked decline of muscular strength. However, the mechanism of fatty infiltration, cellular origin of accumulated adipocytes and its significance are not fully understood. The fact that persistent degenerative muscle fibers are present on dystrophic muscle leads us to hypothesize that muscle fiber condition affects fatty infiltration in skeletal muscle. We employed a single fiber culture system to determine whether fiber condition affects an appearance of adipocytes on the fibers. Artificially hyper-contracted muscle fibers (HCF), generated from isolated intact fibers (IF) of rat extensor digitrum longus muscle, were maintained as non-adherent cultures for 5–7 days. Interestingly, there appeared to be considerable numbers of mature adipocytes on HCF, whereas no adipocytes were seen on IF, indicating that cells on HCF spontaneously differentiated into mature adipocytes. Activation of RhoA signaling by the addition of thrombin decreased the number of adipocytes on HCF in a dose-dependent manner, whereas the number of MyoD-positive myoblasts increased. In contrast, Y-27632, a specific inhibitor of Rho kinases (ROCK), induced adipogenic differentiation of cells derived from IF. In addition, administration of Y-27632 into mouse regenerating muscle resulted in fat accumulation in the muscle. Taken together, the present studies clearly demonstrated that muscle fiber condition affects fat accumulation in skeletal muscle and that is possibly mediated by the RhoA signaling pathway.  相似文献   
989.
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号