首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   18篇
  国内免费   3篇
  270篇
  2023年   4篇
  2022年   6篇
  2021年   8篇
  2020年   5篇
  2019年   9篇
  2018年   9篇
  2017年   9篇
  2016年   13篇
  2015年   12篇
  2014年   10篇
  2013年   13篇
  2012年   7篇
  2011年   10篇
  2010年   10篇
  2009年   5篇
  2008年   16篇
  2007年   8篇
  2006年   9篇
  2005年   11篇
  2004年   7篇
  2003年   8篇
  2002年   11篇
  2001年   13篇
  2000年   4篇
  1999年   8篇
  1998年   9篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1976年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有270条查询结果,搜索用时 0 毫秒
201.
Most montane rain forests on the island of Hawaii consist of a closed canopy formed by Cibotium spp. tree ferns beneath an open canopy of emergent Metrosideros polymorpha trees. We used artificial seedlings to assess the extent to which physical disturbance caused by the senescing fronds of tree ferns and the activities of feral pigs might limit tree regeneration. Artificial seedlings were established terrestrially (N= 300) or epiphytically (N = 300) on tree fern stems. Half of the seedlings on each substrate were in an exclosure lacking feral pigs and half were in forest with pigs present. After one year, the percentage of seedlings damaged was significantly greater among terrestrial seedlings (25.7%) than epiphytic seedlings (11.3%). Significantly more terrestrial seedlings were damaged in the presence of pigs (31.3%) than in the absence of pigs (20.0%). Senescing fronds of tree ferns were responsible for 60.3 percent of the damaged seedlings. Physical disturbance is potentially a major cause of seedling mortality and may reduce the expected half‐life of a seedling cohort to less than two years.  相似文献   
202.
203.
Abstract The paper reports the results of the comprehensive study of crassulacean acid metabolism in two epiphytic tropical ferns, Drymoglossum piloselloides and Pyrrosia longifolia. The plants were investigated under different light, temperature and water status. It was found that both species are obligate CAM plants. The diurnal acidity rhythm is due to the fluctuation in malic acid concentration, which accounts for the change in titratable acidity. Besides malic acid, shikimate and oxalate are found to be present, but not contributing to the CAM acid rhythm. The diurnal rhythm of malic acid content results in a corresponding rhythm in leaf water relations. Both ΦΦ and Φtotal, were lowest at the end of the night, i.e. when the level of malic acid was highest. The effects of temperature on CO2 exchange were inverse to those observed in other CAM plants. In both ferns studied, dark CO2 fixation increased when the night temperature was increased. Increase in day temperature reduced CO2 uptake during phase IV and during the following night. The observed responses of the ferns to temperature changes suggest that the in situ environmental conditions are optimal for their CAM performance. In weak light, the plants showed net CO2 output during the midday deacidification period. Increases in light intensity reduced such CO2 output. Under drought conditions, the CO2 exchange in the ferns was reduced to zero within 5–6 d, indicating that the ferns studied are more susceptible to water deficiency than other CAM plants. This could be due to a higher cuticular conductance for water. The results are discussed, in particular, in relation to CAM performance of epiphytes growing in the wet tropics.  相似文献   
204.
205.
206.
207.
Plants of Nephrolepis cordifolia (L.) C. Presl were grown on soil samples collected in a mine site located in Central Italy and on soil samples from uncontaminated soils to test the ability of this species to accumulate inorganic contaminants under semi-natural conditions. The plants were kept under observation for monitoring the growth and the appearance of any stress symptoms. The concentrations of inorganic ions were determined in the substrates and in different plant organs. The results indicated that N. cordifolia is able to grow vigorously on soils contaminated by inorganic ions that are potentially toxic for living organisms and that this species is able to accumulate several inorganic contaminants mainly in its underground parts. Concentrations of aluminium, iron and lead >1000 mg/kg in the underground parts were detected in plants grown on the contaminated substrate. N. cordifolia is, therefore, potentially useful as a tool for phytostabilization of contaminated soils.  相似文献   
208.
209.
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号