首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   18篇
  国内免费   3篇
  2023年   4篇
  2022年   6篇
  2021年   8篇
  2020年   5篇
  2019年   9篇
  2018年   9篇
  2017年   9篇
  2016年   13篇
  2015年   12篇
  2014年   10篇
  2013年   13篇
  2012年   7篇
  2011年   10篇
  2010年   10篇
  2009年   5篇
  2008年   16篇
  2007年   8篇
  2006年   9篇
  2005年   11篇
  2004年   7篇
  2003年   8篇
  2002年   11篇
  2001年   13篇
  2000年   4篇
  1999年   8篇
  1998年   9篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1976年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有270条查询结果,搜索用时 46 毫秒
121.

Background and Aims

The gametophytes of most homosporous ferns are cordate–thalloid in shape. Some are strap- or ribbon-shaped and have been assumed to have evolved from terrestrial cordate shapes as an adaptation to epiphytic habitats. The aim of the present study was to clarify the morphological evolution of the strap-shaped gametophyte of microsoroids (Polypodiaceae) by precise analysis of their development.

Methods

Spores of Colysis decurrens collected in Kagoshima, Japan, were cultured and observed microscopically. Epi-illuminated micrographs of growing gametophytes were captured every 24 h, allowing analysis of the cell lineage of meristems. Light microscopy of resin-sections and scanning electron microscopy were also used.

Key Results

Contrary to previous assumptions that strap-shaped Colysis gametophytes have no organized meristem, three different types of meristems are formed during development: (1) apical-cell based – responsible for early growth; (2) marginal – further growth, including gametophyte branching; and (3) multicellular – formation of cushions with archegonia. The cushion is two or three layers thick and intermittent. The apical-cell and multicellular meristems are similar to those of cordate gametophytes of other ferns, but the marginal meristem is unique to the strap-shaped gametophyte of this fern.

Conclusions

The strap-shaped gametophytes of C. decurrens may have evolved from ancestors with a cordate shape by insertion of the marginal meristem phase between the first apical-cell-based meristem and subsequent multicellular meristem phases. Repeated retrieval of the marginal meristem at the multicellular meristem phase would result in indefinite prolongation of gametophyte growth, an ecological adaptation to epiphytic habitats.  相似文献   
122.
123.
124.
Background and AimsExtant plant groups with a long fossil history are key elements in understanding vascular plant evolution. Horsetails (Equisetum, Equisetaceae) have a nearly continuous fossil record dating back to the Carboniferous, but their phylogenetic and biogeographic patterns are still poorly understood. We use here the most extensive phylogenetic analysis to date as a framework to evaluate their age, biogeography and genome size evolution.MethodsDNA sequences of four plastid loci were used to estimate divergence times and investigate the biogeographic history of all extant species of Equisetum. Flow cytometry was used to study genome size evolution against the framework of phylogenetic relationships in Equisetum.Key ResultsOn a well-supported phylogenetic tree including all extant Equisetum species, a molecular clock calibrated with multiple fossils places the node at which the outgroup and Equisetum diverged at 343 Mya (Early Carboniferous), with the first major split among extant species occurring 170 Mya (Middle Jurassic). These dates are older than those reported in some other recent molecular clock studies but are largely in agreement with a timeline established by fossil appearance in the geological record. Representatives of evergreen subgenus Hippochaete have much larger genome sizes than those of deciduous subgenus Equisetum, despite their shared conserved chromosome number. Subgenus Paramochaete has an intermediate genome size and maintains the same number of chromosomes.ConclusionsThe first divergences among extant members of the genus coincided with the break-up of Pangaea and the resulting more humid, warmer climate. Subsequent tectonic activity most likely involved vicariance events that led to species divergences combined with some more recent, long-distance dispersal events. We hypothesize that differences in genome size between subgenera may be related to the number of sperm flagellae.  相似文献   
125.

Background

Plants in over one hundred families in habitats worldwide bear extrafloral nectaries (EFNs). EFNs display a remarkable diversity of evolutionary origins, as well as diverse morphology and location on the plant. They secrete extrafloral nectar, a carbohydrate-rich food that attracts ants and other arthropods, many of which protect the plant in return. By fostering ecologically important protective mutualisms, EFNs play a significant role in structuring both plant and animal communities. And yet researchers are only now beginning to appreciate their importance and the range of ecological, evolutionary and morphological diversity that EFNs exhibit.

Scope

This Highlight features a series of papers that illustrate some of the newest directions in the study of EFNs. Here, we introduce this set of papers by providing an overview of current understanding and new insights on EFN diversity, ecology and evolution. We highlight major gaps in our current knowledge, and outline future research directions.

Conclusions

Our understanding of the roles EFNs play in plant biology is being revolutionized with the use of new tools from developmental biology and genomics, new modes of analysis allowing hypothesis-testing in large-scale phylogenetic frameworks, and new levels of inquiry extending to community-scale interaction networks. But many central questions remain unanswered; indeed, many have not yet been asked. Thus, the EFN puzzle remains an intriguing challenge for the future.  相似文献   
126.
We analyzed the geographical and elevational distributions of two Polypodium complexes from Mexico and Central America. Distribution data of nine species of the Polypodium colpodes complex and the Polypodium plesiosorum complex were obtained from almost 1500 herbarium specimens, field collections in Mexico and Costa Rica, and literature studies. The presence of each species was recorded for each Mesoamerican country, in 1° × 1° grid‐cells and biogeographical provinces. The rarity of species was also evaluated. Although the two complexes show extensive overlap, the P. colpodes complex is distributed mainly along the Pacific versant of Mexico and Central America, whereas the P. plesiosorum complex occurs mainly along the Atlantic versant. Those biogeographical provinces with maximum species diversity are Chiapas (seven species), Sierra Madre del Sur (six species), and the Trans‐Mexican Volcanic belt (six species). Grid‐cells with more species are located mainly in the mountains of central‐southern Mexico and northern Central America. Richness does not decrease or increase with latitude. Elevation distributions showed that most Polypodium species are concentrated in the montane interval and three species groups were recognized based on elevational preferences. Polypodium colpodes and P. plesiosorum are the most widely distributed species, whereas Polypodium castaneum and Polypodium flagellare are the only two species that possess the three attributes of rarity (narrow geographical distribution, high habitat specificity, and scarce local populations). Polypodium species of both complexes are present mainly in the montane regions of the study area and show some degree of geographical sympatry, especially in southern Mexico and northern Central America. This overlapping is explained by the elevation tolerance within montane systems and because most species inhabit three or more vegetation types. The distributional patterns of these complexes coincided with the three regional highlands of Mesoamerica, which are separated from each other by the Isthmus of Tehuantepec and by the lowlands of Nicaragua. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   
127.
Morphological and plastid rbcL and trnG-R sequence data suggest that the fern currently recognized as Megalastrum lasiernos (Dryopteridaceae) is in fact a tree fern (Cyatheaceae) and a member of the Cyathea clade. Accordingly, a new combination is made: Cyathea myriotricha. Based on morphological and ecological similarities, this species appears most closely related to C. aterrima. Both species are described and illustrated herein.  相似文献   
128.
129.
李保贵  朱华   《广西植物》2005,25(6):497-503,554
勐腊南贡山季风常绿阔叶林(山坡类型)1 hm2面积样地上有蕨类31种,在该森林群落草本层中占有 极其显著的地位。这些蕨类植物的地理成分分析表明它们属于亚洲热带的印度——马来西亚植物区系的一 部分,表现为东南亚热带北缘植物区系的性质,并有热带山地向亚热带山地过渡的特点。在生态表现上,它们 的生活型组成是高位芽蕨类(地生蕨种)占6.45%;地上芽蕨类12.90%;地面芽蕨类32.26%;地下芽蕨类 32.26%;附生蕨类16.13%。由于该地区的季节性干旱气候,高位芽蕨类较少和几种附生蕨类的附生高度也 相对较低,蕨类植物种群的数量与林下空气湿度及土壤表层的湿度一般成正相关。  相似文献   
130.
To test our hypothesis of hybrid formation involving the ‘independent gametophyte’ phenomenon in ferns, we identified the genomic formulae and ploidy level of gametophytes of the Vandenboschia radicans complex at the periphery of a sporophyte population. We identified haploid gametophytes of V. kalamocarpa (one of the two putative parents of V.×stenosiphon) in a hybrid sporophyte population in Japan that lacks fertile non‐hybrid individuals. Furthermore, diploid sporophytes of the species were not found within a 50‐km radius. This finding supports a hypothesis of hybridization involving the ‘independent gametophyte’ phenomenon and provides a new perspective on the geographical distribution of fern hybrids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号