首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13082篇
  免费   709篇
  国内免费   1967篇
  15758篇
  2024年   27篇
  2023年   232篇
  2022年   347篇
  2021年   436篇
  2020年   369篇
  2019年   531篇
  2018年   412篇
  2017年   342篇
  2016年   334篇
  2015年   405篇
  2014年   741篇
  2013年   805篇
  2012年   553篇
  2011年   743篇
  2010年   642篇
  2009年   709篇
  2008年   741篇
  2007年   714篇
  2006年   680篇
  2005年   622篇
  2004年   578篇
  2003年   546篇
  2002年   404篇
  2001年   356篇
  2000年   315篇
  1999年   285篇
  1998年   273篇
  1997年   229篇
  1996年   210篇
  1995年   227篇
  1994年   229篇
  1993年   204篇
  1992年   203篇
  1991年   133篇
  1990年   136篇
  1989年   117篇
  1988年   93篇
  1987年   98篇
  1986年   76篇
  1985年   96篇
  1984年   74篇
  1983年   72篇
  1982年   88篇
  1981年   49篇
  1980年   55篇
  1979年   61篇
  1978年   62篇
  1977年   23篇
  1976年   27篇
  1974年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
The nucleotide sequences of the cloned human salivary and pancreatic α-amylase cDNAs correspond to the continuous mRNA sequences of 1768 and 1566 nucleotides, respectively. These include all of the amino acid coding regions. Salivary cDNA contains 200 bp in the 5′-noncoding region and 32 in the 3′-noncoding region. Pancreatic cDNA contains 3 and 27 bp of 5′- and 3′-noncoding regions, respectively. The nucleotide sequence humology of the two cDNAs is 96% in the coding region, and the predicted amino acid sequences are 94% homologous.Comparison of the sequences of human α-amylase cDNAs with those previously obtained for mouse α-amylase genes (Hagenbuchle et al., 1980; Schibler et al., 1982) showed the possibility of gene conversion between the two genes of human α-amylase.  相似文献   
4.
Two approaches based on the concept of a vector population index are considered as possible deterministic elements for an empirical forecast of barley yellow dwarf virus (BYDV) in autumn sown cereals. The first, an aerial vector index, is a further elaboration of the infectivity index proposed by Plumb, Lennon & Gutteridge (1981), which assumes that virus damage is a function of the number of infective migrant alatae of the two main aphid vectors, Rhopalosiphum padi L. and Sitobion avenae F., integrated over time from crop planting or emergence. The new formulation, however, excludes holocyclic alate morphs (i.e. males and gynoparae) of the former species, which, although generally abundant in autumn, are nevertheless perceived as relatively unimportant virus vectors since they colonise only the alternative woody host, Prunus padus (the bird-cherry tree). The second approach, a crop vector index, is a more fundamental departure which argues that field populations of viruliferous aphids, both alatae and apterae, which have already colonised cereals, may be a better criterion of potential virus spread than the density of aerial migrant vectors. This index retains a similar integral form, but evaluates crop exposure to BYDV as accumulated infectious aphid-days. A method is described whereby this function can be derived from irregular or infrequent aphid samples in the crop. Both methods, unlike Plumb's (1976) original concept, produced indices which were significantly related to subsequent virus infection and yield loss in winter barley at Long Ashton (S.W. England, UK), 1978–1986. The best models were obtained with the crop vector index, fitted to observed virus infection by generalised linear regression using a complementary log-log link function, or to observed yield loss by simple linear regression using a log transformation of yield (r = 0.84 in each case; compared with r-values > 0.65 for the aerial vector index, and > 0.35 for Plumb's (1976) index). However, the residual errors and hence confidence limits of these fitted regressions were too large for predicting damage that was significantly less than a reasonable economic damage threshold for BYDV control. Analyses of the separate components of each index showed a good general relationship between aphid infectivity and the severity of crop infection, confirming the epidemiological importance of this factor. The functional expressions of aphid density, however, were not significant. This evident weakness in the models, and alternative approaches to BYDV forecasting are discussed.  相似文献   
5.
6.
Abstract .The susceptibility of field-collected Culicoides bolitinos to infection by oral ingestion of bluetongue virus serotypes 1, 3 and 4 (BLU 1, 3 and 4) was compared with that of field-collected C. imicola and laboratory reared C. variipennis sonorensis . The concentration of the virus per millilitre of bloodmeal was 105.0 and 106.0TCID50 for BLU 4 and 107.2TCID50 for BLU 1 and 3. Of 4927 C. bolitinos and 9585 C. imicola fed, 386 and 287 individual midges survived 10 days extrinsic incubation, respectively. Midges were assayed for the presence of virus using a microtitration assay on BHK-21 cells and/or an antigen capture ELISA. Infection prevalences for the different serotypes as determined by virus isolation ranged from 22.7 to 82.0% in C. bolitinos and from 1.9 to 9.8% in C. imicola; infection prevalences were highest for BLU 1, and lowest for BLU 4 in both species. The mean log10 TCID50 titre of the three BLU viruses per single fly was higher in C. bolitinos than in C. imicola . The results suggested that C. bolitinos populations are capable vectors of the BLU viruses in South Africa. A high correlation was found between virus isolation and ELISA results for the detection of BLU 1, and less for BLU 4; the ELISA failed to detect the presence of BLU 3 in infected flies. The C. v. sonorensis colonies had a significantly lower susceptibility to infection with BLU 1, 3 and 4 than C. bolitinos and C. imicola . However, since infection prevalence of C. v. sonorensis was determined only by ELISA, this finding may merely reflect the insensitivity of this assay at low virus titres, compared to virus isolation.  相似文献   
7.
Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).  相似文献   
8.
Abstract The 3D gene of foot-and-mouth disease virus encodes the viral RNA dependent RNA polymerase, also called virus infection associated (VIA) antigen, which is the most important serological marker of virus infection. This 3D gene from a serotype Cl virus has been cloned and overexpressed in Escherichia coli under the control of the strong lambda lytic promoters. The resulting 51 kDa recombinant protein has been shown to be immunoreactive with sera from infected animals. After induction of gene expression, an immediate and dramatic arrest of cell DNA synthesis occurs, similar to that produced by genotoxic doses of the drug mitomycin C. This effect does not occur during the production of either a truncated VIA antigen or other related and non-related viral proteins. The inhibition of DNA replication results in a subsequent induction of the host SOS DNA-repair response and in an increase of the mutation frequency in the surviving cells.  相似文献   
9.
Ombuin (7,4′-dimethyl quercetin) (10 μg ml-1, for 12 wk), glycyrrhizin/quercetin (80 μg ml-1and 10 μg ml-1respectively, for 18 wk), ribavirin (10 μg ml-1, for 12 wk) and quercetin/ribavirin (10 μg ml-1each, for 9–12 wk) reduced the titre of apple stem grooving virus (ASGV) when applied in vitro to infected tissue cultures of Nicotiana occidentalis obliqua Wheeler, and/or Malus domestica. ASGV was not detectable in both plant species after the quercitin/ribavirin treatment when tested by ISEM, herbaceous host indexing, RT-PCR, and immunocapture RT-PCR. A sensitive immunocapture RT-PCR procedure for the detection of ASGV was developed for the screening of treated samples to assess antiviral activity.  相似文献   
10.
A sap-transmissible virus, provisionally named Sri Lankan passion fruit mottle virus (SLPFMV), was isolated from Passiflora edulis f. flavicarpa and shown to induce leaf mottling and distortion in that host. The virus infected 23 species in five plant families with systemic infection being common in the Passifloraceae. Chenopodium amaranticolor was a good local lesion host and Passiflora foetida was a useful systemic host for purification. In P. foetida extracts, SLPFMV lost infectivity after 10 min between 70–75°C, 6–7 days at 20–23°C and at dilutions of 10--5 -W-6. The virus had flexuous, filamentous particles with a normal length of c. 841 nm. Two polypeptides of mol. wt c. 33 200 and 28 700 were detected in purified virus preparations, and a major species of double-stranded RNA (mol. wt 7.0 × 106), was detected in infected plants. Pinwheels, tubular and laminated inclusions were found in ultrathin sections of infected P. edulis f. plavicurpa and cylindrical inclusions were observed in epidermal strips. SLPFMV was transmitted by the aphids Myzus persicae, Aphis spiraecola, A. gossypü and A. cruccivora after brief acquisition feeds. SLPFMV reacted with antisera to several potyviruses including passion fruit woodiness virus, passion fruit ringspot virus, potato virus Y and watermelon mosaic virus 2 and thus, apparently, is a member of the potyvirus group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号