首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   0篇
  国内免费   32篇
  2023年   11篇
  2022年   4篇
  2021年   6篇
  2020年   7篇
  2019年   12篇
  2018年   3篇
  2017年   6篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   9篇
  2012年   6篇
  2011年   8篇
  2010年   5篇
  2009年   14篇
  2008年   11篇
  2007年   7篇
  2006年   9篇
  2005年   21篇
  2004年   18篇
  2003年   12篇
  2002年   18篇
  2001年   14篇
  2000年   12篇
  1999年   8篇
  1998年   3篇
  1997年   7篇
  1996年   8篇
  1995年   8篇
  1994年   10篇
  1993年   7篇
  1992年   10篇
  1991年   3篇
  1984年   1篇
排序方式: 共有288条查询结果,搜索用时 93 毫秒
61.
Human interferon-gamma (hIFN-gamma) was expressed in Escherichia coli BL21(DE3) under the control of the T7 promoter. Glucose was used as the sole source of carbon and energy with simple exponential feeding rate in fed-batch process. Cell density of recombinant E. coli was reached to 100 g dry wt l(-1) under both constant (0.12 h(-1)) and variable (0.12-0.52 h(-1)) specific growth rates. In the variable specific growth rate fed-batch process, plasmid stability and specific yield of rhIFN-gamma were greater than constant specific growth rate fed-batch process. The final specific yield and overall productivity of rhIFN-gamma were 0.35 +/- 0.02 g rhIFN-gamma g(-1) dry cell wt and 0.9 +/- 0.05 g rhIFN-gamma l(-1) h(-1) in the variable specific growth rate fed-batch process, respectively.  相似文献   
62.
Poly(3-hydroxybutyrate) (PHB) was produced by fed-batch cultures of Ralstonia eutropha with phosphate limitation under different glucose concentrations. When glucose was kept at 2.5 g l–1, cell growth and PHB synthesis were limited due to the shortage of carbon source but a higher PHB content occurred in the cell-growth stage. This shows that a low glucose concentration is favorable for PHB accumulation in R. eutropha. PHB obtained with glucose at 9 g l–1 is 1.6 times that obtained with 40 g l–1. When glucose was in the range of 9 to 40 g l–1, PHB concentration and productivity decreased significantly with the increase of glucose concentration. The highest PHB productivity was obtained with glucose at 9 g l–1.  相似文献   
63.
The gene coding for agglutinin from Galanthus nivalis (GNA) was expressed in, and secreted by, the methylotrophic yeast, Pichia pastoris. Transformants of P. pastoris were selected and a process to produce and purify gram quantities of recombinant GNA was developed. GNA was secreted at approximately 80 mg l–1 at the 200 l scale and was purified to 95% homogeneity using hydrophobic interaction chromatography. The recombinant protein was similar to the protein synthesised in plant with respect to structure and biological activity.  相似文献   
64.
AIM: To maximize the growth (expressed as number of viable cells per millilitre) of the postharvest biocontrol agent Candida sake CPA(-1) at laboratory scale conditions. METHODS AND RESULTS: Growth conditons (aeration, agitation speed and inoculum size) were studied in batch conditions in a 5 l fermenter using molasses and urea as growth medium. Consumption of sugars and urea were analysed. Fed-batch studies were also carried out. Glucose and fructose were consumed during the exponential growth phase and were depleted after 18 h of growth. On the contrary, C. sake cells assimilated sucrose during the stationary phase. There was not growth improvement when fed-batch technology was used. Addition of an extra amount of glucose or molasses after 18 h of growth did not contribute to increase final population. CONCLUSIONS: Maximum growth (about 8 x 10(8 )CFU ml(-1)) was obtained at batch fermentation after 30 h growth at 400 rev min(-1), 150 l h(-1) of air and initial concentration of 106 CFU ml(-1). SIGNIFICANCE AND IMPACT OF THE STUDY: The results obtained in this study are an approach for further upscaling of C. sake production.  相似文献   
65.
Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l−1) and less than 200 g l−1 total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l−1 xylitol concentration, 0.75 g xylitol g xylose−1 xylitol yield and 3.9 g xylitol l−1 h−1 volumetric productivity. Journal of Industrial Microbiology & Biotechnology (2002) 29, 16–19 doi:10.1038/sj.jim.7000257 Received 15 October 2001/ Accepted in revised form 30 March 2002  相似文献   
66.
In animal cell cultivation, cell density and product concentration are often low due to the accumulation of toxic end-products such as ammonia and lactate and/or the depletion of essential nutrients. A hybridoma cell line (CRL-1606) was cultivated in T-flasks using a newly devised medium feeding strategy. The goals were to decrease ammonia and lactate formation by the design of an initial medium which would provide a starting environment to achieve optimal cell growth. This was followed by using a stoichiometric equation governing animal cell growth and then designing a supplemental medium for feeding strategy used to control the nutritional environment. The relationship between the stoichiometric demands for glutamine and nonessential amino acids was also studied. Through stoichiometric feeding, nutrient concentrations were controlled reasonably well. Consequently, the specific production rate of lactate was decreased by fourfold compared with conventional fed-batch culture and by 26-fold compared with conventional batch culture. The specific production rate of ammonia was decreased by tenfold compared with conventional fed-batch culture and by 50-fold compared with conventional batch culture. Most importantly, total cell density and monoclonal antibody concentration were increased by five- and tenfold respectively, compared with conventional batch culture. (c) 1994 John Wiley & Sons, Inc.  相似文献   
67.
The production of ethanol from carob pod extract by free and immobilized Saccharomyces cerevisiae cells in batch and fed-batch culture was investigated. Fed-batch culture proved to be a better fermentation system for the production of ethanol than batch culture. In fed-batch culture, both free and immobilized S. cerevisiae cells gave the same maximum concentration (62 g/L) of final ethanol at an initial sugar concentration of 300 g/L and F = 167 mL/h. The maximum ethanol productivity (4.4 g/L h) was obtained with both free and immobilized cells at a substrate concentration of 300 g/L and F = 334 mL/h. In repeated fed-batch culture, immobilized S. cerevisiae cells gave a higher overall ethanol concentration compared with the free cells. The immobilized S. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 10 days. (c) 1994 John Wiley & Sons, Inc.  相似文献   
68.
69.
A mutant, MA-1, of Chlorococcum sp., grown in batch culture, produced about 54 mg ketocarotenoids/l with 10 mM nitrogen. The accumulation rate of these ketocarotenoids was independent of the nitrogen concentration under sunlight illumination. Fed-batch cultures showed poor growth and the average productivity of ketocarotenoids dropped from 2.6 mg/l day to 1.6 mg/l day in the two consecutive fed-batch runs.  相似文献   
70.
Improvement of the fermentation efficiency of poly--hydroxybutyrate (PHB) may make it competitive with chemically synthesized petroleum-based polymers. One step toward this is optimization of fluid dispersion and the feed rates to a fed-batch bioreactor. In a recent study using a fermentation model, dispersion corresponding to a Peclet number of 20 was shown to maximize the productivity of PHB. Here further improvement has been investigated using neural optimization. A comparison of seven neural topologies has shown that while feed-forward and radial basis neural networks are computationally efficient, recurrent networks generate higher concentrations of PHB. All networks enhanced the productivity by 16–93% over model-based optimization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号