首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1045篇
  免费   80篇
  国内免费   27篇
  2024年   3篇
  2023年   12篇
  2022年   16篇
  2021年   23篇
  2020年   28篇
  2019年   47篇
  2018年   53篇
  2017年   41篇
  2016年   42篇
  2015年   23篇
  2014年   72篇
  2013年   75篇
  2012年   30篇
  2011年   58篇
  2010年   20篇
  2009年   50篇
  2008年   52篇
  2007年   35篇
  2006年   30篇
  2005年   35篇
  2004年   35篇
  2003年   29篇
  2002年   28篇
  2001年   22篇
  2000年   17篇
  1999年   23篇
  1998年   23篇
  1997年   13篇
  1996年   23篇
  1995年   10篇
  1994年   19篇
  1993年   19篇
  1992年   29篇
  1991年   13篇
  1990年   12篇
  1989年   14篇
  1988年   11篇
  1987年   8篇
  1986年   12篇
  1985年   11篇
  1984年   4篇
  1983年   7篇
  1982年   6篇
  1981年   2篇
  1980年   12篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
排序方式: 共有1152条查询结果,搜索用时 15 毫秒
151.
152.
153.
The increase rate of utilization of branched-chain amino acids (BCAA) by muscle is reduced to its plasma concentration during prolonged exercise leading to glycogen. BCAA supplementation would reduce the serum activities of intramuscular enzymes associated with muscle damage. To examine the effects of BCAA administration on fatigue substances (serotonin, ammonia and lactate), muscle damage substances (CK and LDH) and energy metabolism substances (FFA and glucose) after endurance exercise. Subjects (n = 26, college-aged males) were randomly divided into an experimental (n = 13, EXP) and a placebo (n = 13, CON) group. Subjects both EXP and CON performed a bout of cycle training (70% VO2max intensity) to exhaustion. Subject in the EXP were administrated BCAA (78ml/kg·w) prior to the bout of cycle exercise. Fatigue substances, muscle damage substances and energy metabolism substances were measured before ingesting BCAAs and placebos, 10 min before exercise, 30 min into exercise, immediately after exercise, and 30 min after exercise. Data were analyzed by two-way repeated measure ANCOVA, correlation and statistical significance was set at p < 0.05. The following results were obtained from this study; 1. In the change of fatigue substances : Serotonin in the EXP tended to decreased at the 10 min before exercise, 30 min into exercise, post exercise, and recovery 30 min. Serotonin in the CON was significantly greater than the EXP at the10 min before exercise and recovery 30. Ammonia in the EXP was increased at the 10 min before exercise, 30 min into exercise, and post exercise, but significantly decreased at the recovery 30min (p < 0.05). Ammonia in the CON was significantly lower than the EXP at the 10 min before exercise, 30 min into exercise, and post exercise (p < 0.05). Lactate in the EXP was significantly increased at the 30 min into exercise and significantly decreased at the post exercise and recovery 30 min. Lactate in the CON was significantly lower than the EXP at the post exercise (p < 0.05). 2. In the change of muscle damage substances : CK in the EXP was decreased at the 10 min before exercise and increased at the 30 min into exercise and then decreased at the post exercise and recovery 30 min. CK in the CON was greater than the EXP. LDH in the EXP was decreased at the 10 min before exercise and increased at the 30 min into exercise and then decreased at the post exercise and recovery 30 min. LDH in the CON was higher than the EXP. 3. In the change of energy metabolism substances :Glucose in the EXP tended to decrease at the 10 min before exercise, 30 min into exercise, post exercise and recovery 30 min. Glucose in the CON was significantly greater than the EXP at the recovery 30 min (p < .05). FFA in both EXP and CON was increased at the post exercise and recovery 30 min. % increase for FFA in the EXP was greater than the CON at the post exercise and recovery 30 min. 4. The relationship of the fatigue substances, muscle damage substances and energy metabolism substances after endurance exercise indicated strongly a positive relationship between LDH and ammonia and a negative relationship between LDH and FFA in the EXP. Also, there were a strong negative relationship between glucose and FFA and a positive relationship between glucose and serotonin in the EXP. There was a strong positive relationship between CK and LDH and a strong negative relationship between FFA and glucose in the CON. These results indicate that supplementary BCAA decreased serum concentrations of the intramuscular enzymes as CK and LDH following exhaustive exercise. This observation suggests that BCAA supplementation may reduce the muscle damage associated with endurance exercise.  相似文献   
154.
The heterotrophic tissues of the plant are dependent upon carbon and nitrogen import for normal growth and development. In general, oxidized forms of these essential elements are reductively assimilated in the leaf and, subsequently, sucrose and amino acids are transported to the heterotrophic cells in a process known as assimilate partitioning. In many plant species, a critical component of the assimilate partitioning pathway is the proton-sucrose symport. This active transport system couples sucrose translocation across the plasma membrane to the proton motive force generated by the H+-pumping ATPase. To date, the proton-sucrose symport is the only known system that can account for sucrose accumulation in the vascular tissue of the plant. This review focuses on recent advances describing the transport properties and bioenergetics of the proton-sucrose symport.  相似文献   
155.
Translational vertebral motion during functional tasks manifests itself in dynamic loci for center of rotation (COR). A shift of COR affects moment arms of muscles and ligaments; consequently, muscle and joint forces are altered. Based on posture- and level-specific trends of COR migration revealed by in vivo dynamic radiography during functional activities, it was postulated that the instantaneous COR location for a particular joint is optimized in order to minimize the joint reaction forces. A musculoskeletal multi-body model was employed to investigate the hypotheses that (1) a posterior COR in upright standing and (2) an anterior COR in forward flexed posture leads to optimized lumbar joint loads. Moreover, it was hypothesized that (3) lower lumbar levels benefit from a more superiorly located COR.The COR in the model was varied from its initial position in posterior-anterior and inferior-superior direction up to ±6 mm in steps of 2 mm. Movement from upright standing to 45° forward bending and backwards was simulated for all configurations. Joint reaction forces were computed at levels L2L3 to L5S1. Results clearly confirmed hypotheses (1) and (2) and provided evidence for the validity of hypothesis (3), hence offering a biomechanical rationale behind the migration paths of CORs observed during functional flexion/extension movement. Average sensitivity of joint force magnitudes to an anterior shift of COR was +6 N/mm in upright and −21 N/mm in 30° forward flexed posture, while sensitivity to a superior shift in upright standing was +7 N/mm and −8 N/mm in 30° flexion. The relation between COR loci and joint loading in upright and flexed postures could be mainly attributed to altered muscle moment arms and consequences on muscle exertion. These findings are considered relevant for the interpretation of COR migration data, the development of numerical models, and could have an implication on clinical diagnosis and treatment or the development of spinal implants.  相似文献   
156.
Anthropomorphic test devices (ATDs) are designed for specific loading scenarios and possess uniquely designed individual components including the neck. The purpose of this study was to determine the influence of the neck surrogate on head kinematics. Inertial loads were generated using a pendulum system with an anthropomorphic head attached to a Hybrid III (HIII) or EuroSID-2 (ES-2) neck. The ATD head-neck assemblies were tested under extension, flexion, lateral bending, oblique extension, and oblique flexion at 3.4 m/s. Peak head kinematics were found to be statistically different with the ES-2 versus HIII neck under certain cases. For extension, the resultant peak linear acceleration (PLA) and resultant peak angular acceleration (PAA) were statistically higher with the ES-2 versus HIII neck. For flexion and lateral bending, there were no statistical differences in the resultant PLA based on neck selection although the resultant PAA was statistically higher with the ES-2 versus HIII neck. For oblique extension, the resultant PLA and PAA statistically increased with the ES-2 versus HIII neck. Furthermore, the acceleration components ax, αx, and αy were statistically higher with the ES-2 neck while ay showed no statistical difference due to neck selection. For oblique flexion, the resultant PLA and PAA were statistically higher with the ES-2 versus HIII neck. Additionally, the acceleration components ax, ay, αx, and αy were statistically higher with the ES-2 versus HIII neck. These findings indicate that for certain loading directions and acceleration components, head kinematics were influenced by the neck surrogate used.  相似文献   
157.
Mechanical loading through youth exercise is highly modifiable and represents a strategy to maximize peak adult bone mass, with the potential for broad implementation across the population to lower fracture risk. For girls, circum-menarcheal growth is critical, with around 50% of adult bone acquired over a 4-year period. Here, we prospectively followed 10 gymnasts and 12 age-matched non-gymnasts across approximately 4 years circum-menarche. A combination of pQCT and subject-specific finite element models were used to measure differences in bone acquisition and structure between the groups, and to determine the degree to which specific mechanical factors predict change in bone structure. At baseline, gymnasts had stronger bone, including 26% higher BMC, 51% greater compressive strength, and 21% higher trabecular density. Over the study period, both groups more than doubled their bone strength. Pre-menarcheal principal stresses predicted change in pQCT variables for non-gymnasts, but not gymnasts. The bone of non-gymnasts became more asymmetrical than the bone of gymnasts. Our results suggest that exposure to the diverse, intense mechanical signals of gymnastic loading during adolescence imparts substantial benefits to bone geometry and mechanical function. Specifically, the bone of gymnasts is better able to resist loading from multiple directions, and operates with a higher factor of safety compared to non-gymnasts.  相似文献   
158.
This study aimed to test whether adding a rest recovery parameter, r, to the analytical three-compartment controller (3CC) fatigue model (Xia and Frey Law, 2008) will improve fatigue estimates during intermittent contractions. The 3CC muscle fatigue model uses differential equations to predict the flow of muscle between three muscle states: Resting (MR), Active (MA), and Fatigued (MF). This model uses a feedback controller to match the active state to target loads and two joint-specific parameters: F, fatigue rate controlling flow from active to fatigued compartments) and R, the recovery rate controlling flow from the fatigued to the resting compartments. This model does well to predict intensity-endurance time curves for sustained isometric tasks. However, previous studies find when rest intervals are present that the model over predicts fatigue. Intermittent rest periods would allow for the occurrence of subsequent reactive vasodilation and post-contraction hyperemia. We hypothesize a modified 3CC-r fatigue model will improve predictions of force decay during intermittent contractions with the addition of a rest recovery parameter, r, to augment recovery during rest intervals, representing muscle re-perfusion. A meta-analysis compiling intermittent fatigue data from 63 publications reporting decline in peak torque (% torque decline) were used for comparison. The original model over-predicted fatigue development from 19 to 29% torque decline; the addition of a rest multiplier significantly improved fatigue estimates to 6–10% torque decline. We conclude the addition of a rest multiplier to the three-compartment controller fatigue model provides a physiologically consistent modification for tasks involving rest intervals, resulting in improved estimates of muscle fatigue.  相似文献   
159.
Free vertical moment (FVM) of ground reaction is recognized to be a meaningful indicator of torsional stress on the lower limbs when walking. The purpose of this study was to examine whether and how gait speed influences the FVM when walking. Fourteen young healthy adults performed a series of overground walking trials at three different speeds: low, preferred and fast. FVM was measured during the stance phase of the dominant leg using a force platform embedded in a 10 m-long walkway. Transverse plane kinematic parameters of the foot and pelvis were measured using a motion capture system. Results showed a significant decrease in peak abduction FVM (i.e., resisting internal foot rotation) and an increase in peak adduction FVM (i.e., resisting external foot rotation), together with an increase in gait speed. Concomitantly, we observed a decrease in the foot progression angle and an increase in the peak pelvis rotation velocity in the transverse plane with an increase in gait speed. A significant positive correlation was found between the pelvis rotation velocity and the peak adduction moment, suggesting that pelvis rotation influences the magnitude of adduction FVM. Furthermore, we also found significant correlations between the peak adduction FVM and both the step length and frequency, indicating that the alterations in FVM may be ascribed to changes in these two key variables of gait speed. These speed-related changes in FVM should be considered when this parameter is used in gait assessment, particularly when used as an index for rehabilitation and injury prevention.  相似文献   
160.
This study combines finite element method and animal studies, aiming to investigate tissue remodelling processes around dental implants inserted into sika deer antler and to develop an alternative animal consuming model for studying bone remodelling around implants. Implants were inserted in the antlers and loaded immediately via a self-developed loading device. After 3, 4, 5 and 6 weeks, implants and surrounding tissue were taken out. Specimens were scanned by μCT scanner and finite element models were generated. Immediate loading and osseointegration conditions were simulated at the implant-tissue interface. A vertical force of 10 N was applied on the implant. During the healing time, density and Young’s modulus of antler tissue around the implant increased significantly. For each time point, the values of displacement, stresses and strains in the osseointegration model were lower than those of the immediate loading model. As the healing time increased, the displacement of implants was reduced. The 3-week immediate loading model (9878 ± 1965 μstrain) illustrated the highest strains in the antler tissue. Antler tissue showed similar biomechanical properties as human bone in investigating the bone remodelling around implants, therefore the use of sika deer antler model is a promising alternative in implant biomechanical studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号