首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7182篇
  免费   212篇
  国内免费   250篇
  2024年   10篇
  2023年   47篇
  2022年   82篇
  2021年   117篇
  2020年   97篇
  2019年   164篇
  2018年   210篇
  2017年   95篇
  2016年   114篇
  2015年   159篇
  2014年   384篇
  2013年   487篇
  2012年   266篇
  2011年   423篇
  2010年   245篇
  2009年   363篇
  2008年   403篇
  2007年   387篇
  2006年   383篇
  2005年   393篇
  2004年   334篇
  2003年   293篇
  2002年   245篇
  2001年   152篇
  2000年   162篇
  1999年   173篇
  1998年   159篇
  1997年   149篇
  1996年   126篇
  1995年   137篇
  1994年   100篇
  1993年   73篇
  1992年   79篇
  1991年   67篇
  1990年   58篇
  1989年   54篇
  1988年   59篇
  1987年   49篇
  1986年   35篇
  1985年   54篇
  1984年   53篇
  1983年   37篇
  1982年   23篇
  1981年   24篇
  1980年   29篇
  1979年   14篇
  1978年   14篇
  1977年   18篇
  1976年   15篇
  1974年   11篇
排序方式: 共有7644条查询结果,搜索用时 15 毫秒
131.
Abstract: Cyclic GMP (cGMP) formation in rat pinealocytes is regulated through a synergistic dual receptor mechanism involving β-and α1-adrenergic receptors. The effects of N -monomethyl- l -arginine (NMMA), which inhibits nitric oxide (NO) synthase and NO-mediated activation of cytosolic guanylate cyclase, and methylene blue (MB), which inhibits cytosolic guanylate cyclase, were investigated in an attempt to understand the role of NO in adrenergic cGMP formation. Both NMMA and MB inhibited β-adrenergic stimulation of cGMP formation as well as α1-adrenergic potentiation of β-adrenergic stimulation of cGMP formation, whereas they had no effect in unstimulated pinealocytes. The inhibitory action of NMMA was antagonized by addition of l -arginine. On the basis of these findings it can be concluded that the adrenergic stimulation of cGMP formation involves NO synthesis followed by activation of cytosolic guanylate cyclase.  相似文献   
132.
The properties of acetohydroxy acid synthase (AHAS, EC 4.1.3.18) from wild-type Chlorella emersonii (var. Emersonii, CCAP-211/11n) and two spontaneous sulfometuron methyl (SMM)-resistant mutants were examined. The AHAS from both mutants was resistant to SMM and cross-resistant to imazapyr (IM) and the triazolopyrimidine sulfonanilide herbicide XRD-498 (TP). The more-SMM-resistant mutant had AHAS with altered catalytic parameters (K m, specificity), but unchanged sensitivity to the feedback inhibitors valine and leucine. The second mutant enzyme was less sensitive to the feedback inhibitors, but had otherwise unchanged kinetic parameters. Inhibition-competition experiments indicated that the three herbicides (SMM, IM, TP) bind in a mutually exclusive manner, but that valine can bind simultaneously with SMM or TP. The three herbicide classes apparently bind to closely overlapping sites. We suggest that the results with C. emersonii and other organisms can all be explained if there are separate binding sites for herbicides, feedback inhibitors and substrates.Abbreviations AHAS acetohydroxy acid synthase - AL acetolactate - AHB acetohydroxybutyrate - IM imazapyr - TP triazolopyrimidine sulfonanilide herbicide XRD-498 - R enzyme specificity - SMM sulfometuron methyl This research was supported in part by the United States — Israel Binational Science Foundation (BSF), Jerusalem, Israel (Grant 86-00205) and the Fund for Basic Research, Israel Academy of Sciences.  相似文献   
133.
Pollen-tube cell walls are unusual in that they are composed almost entirely of callose, a (1,3)--linked glucan with a few 6-linked branches. Regulation of callose synthesis in pollen tubes is under developmental control, and this contrasts with the deposition of callose in the walls of somatic plant cells which generally occurs only in response to wounding or stress. The callose synthase (uridine-diphosphate glucose: 1,3--d-glucan 3--d-glucosyl transferase, EC 2.4.1.34) activities of membrane preparations from cultured pollen tubes and suspension-cultured cells of Nicotiana alata Link et Otto (ornamental tobacco) exhibited different kinetic and regulatory properties. Callose synthesis by membrane preparations from pollen tubes was not stimulated by Ca2+ or other divalent cations, and exhibited Michaelis-Menten kinetics only between 0.25 mM and 6 mM uridine-diphosphate glucose (K m 1.5–2.5 mM); it was activated by -glucosides and compatible detergents. In contrast, callose synthesis by membrane preparations from suspension-cultured cells was dependent on Ca2+, and in the presence of 2 mM Ca2+ exhibited Michaelis-Menten kinetics above 0.1 mM uridine-diphosphate glucose (K m 0.45 mM); it also required a -glucoside and low levels of compatible detergent for full activity, but was rapidly inactivated at higher levels of detergent. Callose synthase activity in pollen-tube membranes increased ten fold after treatment of the membranes with trypsin in the presence of detergent, with no changes in cofactor requirements. No increase in callose synthase activity, however, was observed when membranes from suspension-cultured cells were treated with trypsin. The insoluble polymeric product of the pollen-tube enzyme was characterised as a linear (1,3)--d-glucan with no 6-linked glucosyl branches, and the same product was synthesised irrespective of the assay conditions employed.Abbreviations Ara l-arabinose - CHAPS 3-[(3-cholamidopropyl)dimethylammonia]-1-propane sulphonic acid - DAP diphenylamine-aniline-phosphoric acid stain - Gal d-galactose - Glc d-glucose - Man d-mannose - Mes 2-(N-morpholino)ethane sulphonic acid - Rha d-rhamnose - Rib d-ribose - TFA trifluoroacetic acid - UDPGlc uridine-diphosphate glucose - Xyl d-xylose This research was supported by funds from a Special Research Centre of the Australian Research Council. H.S. was funded by a Melbourne University Postgraduate Scholarship and an Overseas Postgraduate Research Studentship; S.M.R. was supported by a Queen Elizabeth II Research Fellowship. We thank Bruce McGinness and Susan Mau for greenhouse assistance, and Deborah Delmer and Adrienne Clarke for advice and encouragement throughout this project.  相似文献   
134.
135.
N-nitro-l-arginine (NG-nitro-l-arginine) is a potent nitric oxide synthase inhibitor which crosses the blood brain barrier and does not undergo extensive metabolism in vivo. In this study, effect of chronic pretreatment of N-nitro-l-arginine (75 mg/kg, i.p., twice daily for 7 days) on the harmaline- (100 mg/kg, s.c.), picrotoxin- (4 mg/kg, s.c.), pentylenetetrazole- (50 mg/kg, i.p.), andl-glutamic acid- (400 g/10 l/mouse, i.c.v.) induced increase in cerebellar cGMP was assessed. All the four drugs produced significant increase in cerebellar cGMP in vehicle pretreated control animals. Cerebellar cGMP increase induced by harmaline, picrotoxin, andl-glutamic acid was attentuated in N-nitro-l-arginine pretreated animals. These results indicate that in vivo cerebellar cGMP levels are increased by the prototype excitatory amino acid receptor agonist,l-glutamic acid and also by the drugs which augment the excitatory amino acid transmission. Furthermore, parenteral chronic administration of N-nitro-l-arginine blocks NO synthase in the brain and hence cerebellar cGMP response in chronic N-nitro-l-arginine treated animals could be used as a tool to assess the physiological functions of nitric oxide in vivo.Part of this work was presented at the Experimental Biology 93 FASEB Meeting at New Orleans, March 1993.  相似文献   
136.
The fungus Neurospora crassa harbors large amounts of cytoplasmic filaments which are homopolymers of a 59-kDa polypeptide (P59Nc). We have used molecular cloning, sequencing and enzyme activity measurement strategies to demonstrate that these filaments are made of pyruvate decarboxylase (PDC, EC 4.1.1.1), which is the key enzyme in the glycolytic-fermentative pathway of ethanol production in fungi, and in certain plants and bacteria. Immunofluorescence analyses of 8–10-nm filaments, as well as quantitative Northern blot studies of P59Nc mRNA and measurements of PDC activity, showed that the presence and abundance of PDC filaments depends on the metabolic growth conditions of the cells. These findings may be of relevance to the biology of ethanol production by fungi, and may shed light on the nature and variable presence of filament bundles described in fungal cells.  相似文献   
137.
Mechanism of antiviral activity of 1-β-d -arabinofuranosyl-E-5-(2-bromovinyl)uracil (BV-araU) against the YSR strain of varicella-zoster virus (VZV), which is a mutant derived from the wild YS strain and is completely deficient in viral thymidine kinase (TK), was searched in comparison with antiviral activity of other thymidine analogues, guanosine analogue and thymidylate synthase (TS) inhibitor in human embryo lung fibroblast cells. Thymidine analogues, such as BV-araU, 5-iododeoxyuridine (IUDR), 1-β-d -arabinofuranosylthymine (araT), and guanosine analogue, such as 9-(2-hydroxyethoxymethyl)guanine (ACV), showed higher antiviral activity to the YS strain than to the YSR strain. Though, BV-araU also had the antiviral activity of a microgram level against the YSR strain. In contrast to these results, TS inhibitor, 5-fluorodeoxyuridine (FUDR), had higher antiviral activity to the YSR strain than to the YS strain. Highly synergistic antiviral activities of FUDR to the YS strain and the YSR strain were observed in combination with IUDR, araT, or ACV. However, weakly synergistic or additive inhibition to the YSR strain was shown in combination of BV-araU and FUDR, in spite of highly synergistic effect of this combination to the YS strain. The viral and cellular TS activity was partially inhibited by BV-araU monophosphate, but not by BV-araU. These results indicate that BV-araU is converted into BV-araU monophosphate by cellular TK, and the inhibition of TS activity by BV-araU monophosphate in the YSR strain-infected cells results in the suppression of viral replication.  相似文献   
138.
139.
5-Aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway in nonplant higher eukaryotes. Murine erythroid 5-aminolevulinate synthase has been purified to homogeneity from an Escherichia coli overproducing strain, and the catalytic and spectroscopic properties of this recombinant enzyme were compared with those from nonrecombinant sources (Ferreira, G.C. & Dailey, H.A., 1993, J. Biol. Chem. 268, 584-590). 5-Aminolevulinate synthase is a pyridoxal 5'-phosphate-dependent enzyme and is functional as a homodimer. The recombinant 5-aminolevulinate synthase holoenzyme was reduced with tritiated sodium borohydride and digested with trypsin. A single peptide contained the majority of the label. The tritiated peptide was isolated, and its amino acid sequence was determined; it corresponded to 15 amino acids around lysine 313, to which pyridoxal 5'-phosphate is bound. Significantly, the pyridoxyllysine peptide is conserved in all known cDNA-derived 5-aminolevulinate synthase sequences and is present in the C-terminal (catalytic) domain. Mutagenesis of the 5-aminolevulinate synthase residue, which is involved in the Schiff base linkage with pyridoxal 5'-phosphate, from lysine to alanine or histidine abolished enzyme activity in the expressed protein.  相似文献   
140.
The zinc metalloenzyme porphobilinogen synthase (PBGS) contains several functionally important, but previously unidentified, reactive sulfhydryl groups. The enzyme has been modified with the reversible sulfhydryl-specific nitroxide spin label derivative of methyl methanethiosulfonate (MMTS), (1-oxyl-2,2,5,5-tetramethyl-delta 3-pyrroline-3-methyl)methanethiosulfonate (SL-MMTS) (Berliner, L. J., Grunwald, J., Hankovszky, H. O., & Hideg, K., 1982, Anal. Biochem. 119, 450-455). EPR spectra show that SL-MMTS labels three groups per PBGS subunit (24 per octamer), as does MMTS. EPR signals reflecting nitroxides of different mobilities are observed. Two of the three modified cysteines have been identified as Cys-119 and Cys-223 by sequencing peptides produced by an Asp-N protease digest of the modified protein. Because MMTS-reactive thiols have been implicated as ligands to the required Zn(II), EPR spectroscopy has been used to determine the spatial proximity of the modified cysteine residues. A forbidden (delta m = 2) EPR transition is observed indicating a through-space dipolar interaction between at least two of the nitroxides. The relative intensity of the forbidden and allowed transitions show that at least two of the unpaired electrons are within at most 7.6 A of each other. SL-MMTS-modified PBGS loses all Zn(II) and cannot catalyze product formation. The modified enzyme retains the ability to bind one of the two substrates at each active site. Binding of this substrate has no influence on the EPR spectral properties of the spin-labeled enzyme, or on the rate of release of the nitroxides when 2-mercaptoethanol is added.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号