首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   32篇
  国内免费   30篇
  2024年   1篇
  2023年   1篇
  2022年   3篇
  2021年   12篇
  2020年   25篇
  2019年   20篇
  2018年   17篇
  2017年   20篇
  2016年   14篇
  2015年   16篇
  2014年   13篇
  2013年   25篇
  2012年   11篇
  2011年   11篇
  2010年   9篇
  2009年   18篇
  2008年   12篇
  2007年   16篇
  2006年   14篇
  2005年   8篇
  2004年   8篇
  2003年   8篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   2篇
  1979年   4篇
排序方式: 共有329条查询结果,搜索用时 15 毫秒
131.
Biomass and lipid productivities of Chlorella vulgaris under different growth conditions were investigated. While autotrophic growth did provide higher cellular lipid content (38%), the lipid productivity was much lower compared with those from heterotrophic growth with acetate, glucose, or glycerol. Optimal cell growth (2 g l−1) and lipid productivity (54 mg l−1 day−1) were attained using glucose at 1% (w/v) whereas higher concentrations were inhibitory. Growth of C. vulgaris on glycerol had a similar dose effects as those from glucose. Overall, C. vulgaris is mixotrophic.  相似文献   
132.
A block to polyspermy is required for successful fertilisation and embryo survival in mammals. A higher incidence of polyspermy is observed during in vitro fertilisation (IVF) compared with the in vivo situation in several species. Two groups of mechanisms have traditionally been proposed as contributing to the block to polyspermy in mammals: oviduct‐based mechanisms, avoiding a massive arrival of spermatozoa in the proximity of the oocyte, and egg‐based mechanisms, including changes in the membrane and zona pellucida (ZP) in reaction to the fertilising sperm. Additionally, a mechanism has been described recently which involves modifications of the ZP in the oviduct before the oocyte interacts with spermatozoa, termed “pre‐fertilisation zona pellucida hardening”. This mechanism is mediated by the oviductal‐specific glycoprotein (OVGP1) secreted by the oviductal epithelial cells around the time of ovulation, and is reinforced by heparin‐like glycosaminoglycans (S‐GAGs) present in oviductal fluid. Identification of the molecules contributing to the ZP modifications in the oviduct will improve our knowledge of the mechanisms of sperm‐egg interaction and could help to increase the success of IVF systems in domestic animals and humans.  相似文献   
133.
AIM: The study was undertaken to determine the inactivation rate of Campylobacter jejuni in New Zealand soils. METHODS AND RESULTS: Farm dairy effluent (FDE) inoculated at c. 10(5) ml(-1) with C. jejuni was applied to intact soil cores at a rate of 2 l m(-2). Four soils were used: Hamilton (granular); Taupo (pumice); Horotiu and Waihou (allophanic). After FDE application cores were incubated at 10 degrees C for up to 32 days. For all four soils all the FDE remained within the cores and at least 99% of C. jejuni were retained in the top 5 cm. Campylobacter jejuni had declined to the limit of detection (two C. jejuni 100 g(-1)) by 25 days in Hamilton and Taupo soils and by 32 days in Waihou soil. In contrast, in Horotiu soil the decline was only three orders of magnitude after 32 days. Simulated heavy rainfall was applied 4 and 11 days after FDE application and only about 1% of the applied C. jejuni were recovered in leachates. CONCLUSIONS: This study demonstrated that at least 99% of applied C. jejuni were retained in the top 5 cm of four soils where they survived for at least 25 days at 10 degrees C. SIGNIFICANCE AND IMPACT OF THE STUDY: Soil retention of C. jejuni is efficient at FDE application rates that prevent drainage losses. The low infectious dose of C. jejuni and its ability to survive up to 25 days have implications for stock management on dairy farms.  相似文献   
134.
Effects of arbuscular mycorrhzal (AM) fungi on plant growth and nutrition are well-known, but their effects on the wider soil biota are less clear. This is in part due to difficulties with establishing appropriate non-mycorrhizal controls in the field. Here we present results of a field experiment using a new approach to overcome this problem. A previously well-characterized mycorrhizal defective tomato mutant (rmc) and its mycorrhizal wildtype progenitor (76R MYC+) were grown at an organic fresh market tomato farm (Yolo County, CA). At the time of planting, root in-growth cores amended with different levels of N and P, were installed between experimental plants to study localized effects of mycorrhizal and non-mycorrhizal tomato roots on soil ecology. Whilst fruit yield and vegetative production of the two genotypes were very similar at harvest, there were large positive effects of colonization of roots by AM fungi on plant nutrient contents, especially P and Zn. The presence of roots colonized by AM fungi also resulted in improved aggregate stability by increasing the fraction of small macroaggregates, but only when N was added. Effects on the wider soil community including nematodes, fungal biomass as indicated by ergosterol, microbial biomass C, and phospholipid fatty acid (PLFA) profiles were less pronounced. Taken together, these data show that AM fungi provide important ecosystem functions in terms of plant nutrition and aggregate stability, but that a change in this one functional group had only a small effect on the wider soil biota. This indicates a high degree of stability in soil communities of this organic farm.  相似文献   
135.
Among the different nanostructures that have been demonstrated as promising materials for various applications, 3D nanostructures have attracted significant attention as building blocks for constructing high‐performance nanodevices. Particularly over the last decade, considerable research efforts have been devoted to designing, fabricating, and evaluating 3D nanostructures as electrodes for electrochemical energy conversion and storage devices. Although remarkable progress has been achieved, the performance of electrochemical energy devices based on 3D nanostructures in terms of energy conversion efficiency, energy storage capability, and device reliability still needs to be significantly improved to meet the requirements for practical applications. Rather than simply outlining and comparing different 3D nanostructures, this article systematically summarizes the general advantages as well as the existing and future challenges of 3D nanostructures for electrochemical energy conversion and storage, focusing on photoelectrochemical water splitting, photoelectrocatalytic solar‐to‐fuels conversion from nitrogen and carbon dioxide, rechargeable metal‐ion batteries, and supercapacitors. A comprehensive understanding of these advantages and challenges shall provide valuable guidelines and enlightenments to facilitate the further development of 3D nanostructured materials, and contribute to the achieving more efficient energy conversion and storage technologies toward a sustainable energy future.  相似文献   
136.
Straw is an important livestock bedding material facing increasing demand for alternative uses in Europe and is often transported long distances from arable to livestock regions. Alternative bedding materials cultivated directly on livestock farms could potentially avoid this transport and competition for use. For the first time, we applied consequential life cycle assessment (LCA) to account for the direct and indirect implications of miscanthus bedding production on livestock farms, considering displacement of fodder or livestock, and substitution of fossil fuels with straw in electricity generation. We modelled the effect of substituting straw with ‘home‐grown’ miscanthus bedding across seven beef and sheep farms. The consequences of displacing grass forage (or animal) production with home‐grown miscanthus bedding cultivation were evaluated via three farmer decision scenarios: buy extra concentrate feed (D1), utilize remaining pasture areas more efficiently (D2) and buy grass silage (D3). Electricity generated from displaced straw (bedding) substituted either natural gas or coal electricity. Sensitivity analyses were undertaken using 34 scenario permutations to represent combinations of feed and electricity substitution, miscanthus fertilization rates and yields, and the quality of displaced pasture. Consequential LCA indicates that miscanthus bedding production could be environmentally beneficial, under scenarios involving D2 and D3. However, greenhouse gas emissions and wider environmental burdens may be increased under D1 scenarios, owing to the environmental cost of additional concentrate feed production, and possible indirect land use change, outweighing the benefits from: (a) fossil electricity substitution with straw bioelectricity; (b) reduced animal emissions via improved digestibility of concentrate feed; (c) avoided straw transport. The ratio of the yield of miscanthus to replaced grass was found to be a critical determinant of D1 environmental outcomes. We conclude that if grass forage production can be better managed, the use of miscanthus as a bedding material on livestock farms provides environmental benefits via diversion of straw to bioenergy use.  相似文献   
137.
The neuroendocrinology of ingestive behavior is a topic central to human health, particularly in light of the prevalence of obesity, eating disorders, and diabetes. The study of food intake in laboratory rats and mice has yielded some useful hypotheses, but there are still many gaps in our knowledge. Ingestive behavior is more complex than the consummatory act of eating, and decisions about when and how much to eat usually take place in the context of potential mating partners, competitors, predators, and environmental fluctuations that are not present in the laboratory. We emphasize appetitive behaviors, actions that bring animals in contact with a goal object, precede consummatory behaviors, and provide a window into motivation. Appetitive ingestive behaviors are under the control of neural circuits and neuropeptide systems that control appetitive sex behaviors and differ from those that control consummatory ingestive behaviors. Decreases in the availability of oxidizable metabolic fuels enhance the stimulatory effects of peripheral hormones on appetitive ingestive behavior and the inhibitory effects on appetitive sex behavior, putting a new twist on the notion of leptin, insulin, and ghrelin “resistance.” The ratio of hormone concentrations to the availability of oxidizable metabolic fuels may generate a critical signal that schedules conflicting behaviors, e.g., mate searching vs. foraging, food hoarding vs. courtship, and fat accumulation vs. parental care. In species representing every vertebrate taxa and even in some invertebrates, many putative “satiety” or “hunger” hormones function to schedule ingestive behavior in order to optimize reproductive success in environments where energy availability fluctuates.  相似文献   
138.
There has been considerable recent concern about the plight of seabirds globally, as many species have declined substantially. In the UK there are statutory needs to monitor seabirds at sea, particularly in light of new offshore areas being designated for conservation and plans for major offshore wind farm developments. However, the extent to which at‐sea surveys are capable of detecting changes in abundance and options for improving survey protocols have received little attention. We investigate the power of detecting changes in numbers using at‐sea surveys. Using data collected as part of a visual aerial seabird survey programme that covered areas of ‘Round 2’ offshore wind farm developments in UK waters, we quantify the variability and characterize the statistical properties of count data. By generating random datasets with the same properties as real data, we estimated the power of being able to detect various declines (50, 33, 25, 15 and 10%) and assessed the effects of survey duration and frequency and of spatial scale and variability in bird numbers. The results indicate that the survey design protocols used for the UK ‘Round 2’ offshore wind farm visual aerial seabird survey programme do not provide adequate means of detecting changes in numbers, even when declines are in excess of 50% and assumptions regarding certainty are relaxed to < 80%. Extending the duration, frequency and spatial extent of surveys would increase the probability of detecting changes, but not to a desirable level (e.g. > 0.8). The primary reason why there is a low probability of being able to detect consistent directional changes is that seabird numbers fluctuate greatly at any given location. Means of explaining this fine‐scale variability are required, especially if small changes in populations are to be detected. Incorporating hydrodynamic variables into trend analysis might increase the power of detecting changes. Failure to detect changes in seabird numbers should not be taken to mean that no changes are occurring.  相似文献   
139.
Two studies were conducted to test the feasibility and efficacy of using physical barriers (Maggot Barrier® nylon mesh bags) for control of three internal pests of tree fruit (codling moth (Cydia pomonella L.), apple maggot (Rhagoletis pomonella (Walsh)) and peach twig borer (Anarsia lineatella Zeller)) and three groups of external direct pests (stink bugs (Pentatomidae), plant bugs (Miridae) and birds). Two types of Maggot Barrier® were tested (regular and heavy duty), and two methods of securing the bags: knotting the bag on itself (‘self‐ties’) and using plastic‐coated wire ‘twist‐ties’. Bags were applied to eight cultivars of both apples and peaches, selected to give a range of maturity dates. Apples were bagged when fruit was approximately 27 mm in diameter, and peaches when the fruit was approximately 36 mm in diameter. Unbagged fruits served as controls. On apples, bagging had no effect on damage due to birds, stink bugs or apple maggot (which was present only in very low numbers), but reduced codling moth damage by 20–25% compared with unbagged controls; there were no significant differences due to bag type or tie type. In apples, a significantly higher proportion of the heavy duty bags were reusable after harvest, but on peaches, which were bagged for a shorter time, there was no difference between bag types in this respect. Bagging significantly reduced the percentage of peach fruits damaged by twig borer, birds and stink bugs, but increased the percentage of fruit with skin marks; there were no significant differences between bag or tie types. In peaches, there were significant effects on the time taken to apply bags due to both tying method and differences between individual operators. Cultivar affected pest‐related damage in both fruit types, underlining the importance of appropriate cultivar choice in pest management, particularly for organic growers and home gardeners.  相似文献   
140.
Miscanthus × giganteus is often regarded as one of the most promising crops to produce sustainable bioenergy. This perennial crop, renowned for its high productivity associated with low input requirements, in particular regarding fertilizers, is thought to have low environmental impacts, but few data are available to confirm this. Our study aimed at assessing nitrate leaching from Miscanthus × giganteus crops in farmers' fields, thus including a wide range of soil and cropping system conditions. We focused on the first years of growth after planting as experimental studies have suggested that Miscanthus × giganteus, once established, results in low nitrate leaching. We combined on‐farm measurements and modeling to estimate drainage, leached nitrogen, and nitrate concentration in drainage water in 38 fields located in Center‐East France during two winters (November 2010 to March 2011, November 2011 to March 2012). Nitrate leaching and nitrate concentration in drainage water were on average very low. Nitrate leaching averaged 6 kg N ha?1 whereas nitrate concentration averaged 12 mg l?1. These low values are attributable to the low estimates of drainage water (mean = 166 mm) but also to the low soil mineral nitrogen contents measured at the beginning of winter (mean = 37 kg N ha?1). Our results were, however, very variable, mainly due to the crop age: nitrate leaching and nitrate concentration were critically higher during the winter following the first growth year of Miscanthus × giganteus, reflecting the low development of the crop. This variability was also explained by the range of soil and cropping conditions explored in the on‐farm design: shallow and/or sandy soils as well as fields where establishment failed had a higher risk of nitrate leaching.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号