首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   6篇
  国内免费   10篇
  239篇
  2023年   11篇
  2022年   13篇
  2021年   28篇
  2020年   18篇
  2019年   18篇
  2018年   16篇
  2017年   4篇
  2016年   6篇
  2015年   7篇
  2014年   16篇
  2013年   15篇
  2012年   18篇
  2011年   5篇
  2010年   8篇
  2009年   4篇
  2008年   16篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
111.
112.
Abstract

The neural substrates of tactile roughness perception have been investigated by many neuroimaging studies, while relatively little effort has been devoted to the investigation of neural representations of visually perceived roughness. In this human fMRI study, we looked for neural activity patterns that could be attributed to five different roughness intensity levels when the stimuli were perceived visually, i.e., in absence of any tactile sensation. During functional image acquisition, participants viewed video clips displaying a right index fingertip actively exploring the sandpapers that had been used for the behavioural experiment. A whole brain multivariate pattern analysis found four brain regions in which visual roughness intensities could be decoded: the bilateral posterior parietal cortex (PPC), the primary somatosensory cortex (S1) extending to the primary motor cortex (M1) in the right hemisphere, and the inferior occipital gyrus (IOG). In a follow-up analysis, we tested for correlations between the decoding accuracies and the tactile roughness discriminability obtained from a preceding behavioural experiment. We could not find any correlation between both although, during scanning, participants were asked to recall the tactilely perceived roughness of the sandpapers. We presume that a better paradigm is needed to reveal any potential visuo-tactile convergence. However, the present study identified brain regions that may subserve the discrimination of different intensities of visual roughness. This finding may contribute to elucidate the neural mechanisms related to the visual roughness perception in the human brain.  相似文献   
113.
Magnetoencephalography (MEG) has recently revealed that the transitions between the parietal operculum (Pop) and the insula (area G) and the ventral end of the central sulcus (cs) were activated with the shortest latency by instrumental gustatory stimulation, which suggests that the location of the primary gustatory area is in these two regions. However, studies using other noninvasive brain-imaging methods such as positron-emission tomography or functional magnetic resonance imaging (fMRI) with manual application of tastants into the mouth have been unable to confirm this. The present study examined cortical activation by repetitive stimulation of the tongue tip with 1 M NaCl with a computer-controlled stimulator and used fMRI to detect it. In individual brains, activations were detected with multiple comparisons (false discovery rate) across the whole brain corrected (threshold at P < 0.05) at both area G and frontal operculum (Fop) in 8 of 11 subjects and at the rolandic operculum (Rop) in 7 subjects. Activations were also found at the ventral end of the cs (n = 3). Group analysis with random-effect models (multiple comparison using familywise error in regions of interest, P < 0.02) revealed activation at area G in both hemispheres and in the Fop, Rop, and ventral end of the cs on the left side. The present study revealed no activation on the gyrus of the external cerebral surface except for the Rop. Taking MEG findings into consideration, the present findings strongly indicate that the primary gustatory area is present at both the transition between the Pop and insula and the Rop including the gray matter within a ventral part of the cs.  相似文献   
114.
A consistent finding in drug abuse research is that males and females show differences in their response to drugs of abuse. In women, increased plasma estradiol is associated with increased vulnerability to the psychostimulant and reinforcing effects of drugs of abuse. Our laboratory has focused on the role of estradiol in modulating the response to cocaine. We have seen that ovariectomy increases the locomotor response to a single cocaine injection, whereas estradiol exacerbates the locomotor response to repeated cocaine administration. Cocaine-induced sensitization of brain activity, as measured by fMRI, is also dependent on plasma estradiol. Moreover, we observed that although all ovariectomized rats show conditioned place preference to cocaine, it is more robust in ovariectomized rats with estradiol.Opioid receptors are enriched in brain regions associated with pleasure and reward. We find that in females, the effectiveness of kappa opioid agonists in decreasing the locomotor response to repeated cocaine varies with plasma estradiol. We also find that estradiol regulates the density of mu opioid receptors in brains areas associated with reward. These data hint that in females, estradiol modulates the behavioral effects of cocaine by regulating mu and kappa opioid signaling in mesocorticolimbic brain structures. Identifying the mechanisms that mediate differences in vulnerability to drugs of abuse may lead to effective therapeutic strategies for the treatment and prevention of addiction and relapse. We encourage health practitioners treating persons addicted to drugs to consider gender differences in response to particular pharmacotherapies, as well the sex steroid milieu of the patient.  相似文献   
115.
Gene polymorphisms in the mammalian biological clock system influence individual rhythms. A single nucleotide polymorphism (SNP) in the 3' flanking region of CLOCK (3111 T/C; rs1801260) influenced diurnal preference in healthy humans and caused sleep phase delay and insomnia in patients affected by bipolar disorder. Genes of the biological clock are expressed in many brain structures other than in the 'master clock' suprachiasmatic nuclei. These areas, such as cingulate cortex, are involved in the control of many human behaviors. Clock genes could then bias 'nonclock' functions such as information processing and decision making. Thirty inpatients affected by a major depressive episode underwent blood oxygen–level dependent (BOLD) functional magnetic resonance imaging (fMRI). The cognitive activation paradigm was based on a go/no-go task. Morally connoted words were presented. Genotyping of CLOCK was performed for each patients. We measured activity levels through actimetry during the day before the fMRI study. CLOCK 3111 T/C SNP was associated with activity levels in the second part of the day, neuropsychological performance and BOLD fMRI correlates (interaction of genotype and moral valence of the stimuli). Our results support the hypothesis that individual clock genotype may influence several variables linked with human behaviors in normal and psychopathological conditions.  相似文献   
116.
《Current biology : CB》2020,30(9):1748-1754.e4
  1. Download : Download high-res image (192KB)
  2. Download : Download full-size image
  相似文献   
117.
Identifying neurobiological mechanisms mediating the emergence of individual differences in behavior is critical for advancing our understanding of relative risk for psychopathology. Neuroreceptor positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) can be used to assay in vivo regional brain chemistry and function, respectively. Typically, these neuroimaging modalities are implemented independently despite the capacity for integrated data sets to offer unique insight into molecular mechanisms associated with brain function. Through examples from the serotonin and dopamine system and its effects on threat- and reward-related brain function, we review evidence for how such a multimodal neuroimaging strategy can be successfully implemented. Furthermore, we discuss how multimodal PET-fMRI can be integrated with techniques such as imaging genetics, pharmacological challenge paradigms and gene-environment interaction models to more completely map biological pathways mediating individual differences in behavior and related risk for psychopathology and inform the development of novel therapeutic targets.  相似文献   
118.
To avoid polarization and maintain small-worldness in society, people who act as attitudinal brokers are critical. These people maintain social ties with people who have dissimilar and even incompatible attitudes. Based on resting-state functional magnetic resonance imaging (n = 139) and the complete social networks from two Korean villages (n = 1508), we investigated the individual-level neural capacity and social-level structural opportunity for attitudinal brokerage regarding gender role attitudes. First, using a connectome-based predictive model, we successfully identified the brain functional connectivity that predicts attitudinal diversity of respondents'' social network members. Brain regions that contributed most to the prediction included mentalizing regions known to be recruited in reading and understanding others’ belief states. This result was corroborated by leave-one-out cross-validation, fivefold cross-validation and external validation where the brain connectivity identified in one village was used to predict the attitudinal diversity in another independent village. Second, the association between functional connectivity and attitudinal diversity of social network members was contingent on a specific position in a social network, namely, the structural brokerage position where people have ties with two people who are not otherwise connected.  相似文献   
119.
精神分裂症(schizophrenia)是一种常见的精神疾病,在中国终身患病率大概为6.55‰.研究精神分裂症的语言认知,对精神分裂症的诊断和治疗具有重要的理论和应用价值.本文从行为和神经[事件相关电位(event-related potentials,ERP)、功能磁共振成像(functional magnetic resonance imaging,f MRI)、近红外光学成像(functional near-Infrared spectroscopy,f NIRS)]两个层面简述了国内外精神分裂症语言认知的研究进展.目前西方国家对精神分裂症的语言认知研究较多,结果也很丰富,初步形成了语言损伤的理论,而且发现幻听与语言加工相关脑区(wernicke区)有密切关系.精神分裂症的汉语认知研究起步较晚,各方面还不够深入和完善.作者提出应该大力加强对中国精神分裂症的语言认知研究,不仅可以更加清楚中国精神分裂症患者的语言特点,更重要的是可以为中国精神分裂症患者的诊断和探索发病机制提供新的科学依据.  相似文献   
120.
视皮层分区及其fMRI 研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
血氧水平依赖功能磁共振成像(BOLD—fMRI)作为一种无创、可精确定位的脑功能研究技术,已广泛应用于视觉系统的研究中,并取得了许多重要成果,本文就fMRI研究进展及其在大脑视觉皮层功能分区中的应用做一综述。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号