首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   117篇
  国内免费   114篇
  809篇
  2024年   5篇
  2023年   26篇
  2022年   25篇
  2021年   30篇
  2020年   49篇
  2019年   53篇
  2018年   41篇
  2017年   45篇
  2016年   33篇
  2015年   50篇
  2014年   35篇
  2013年   64篇
  2012年   29篇
  2011年   31篇
  2010年   17篇
  2009年   26篇
  2008年   30篇
  2007年   27篇
  2006年   20篇
  2005年   20篇
  2004年   15篇
  2003年   20篇
  2002年   14篇
  2001年   16篇
  2000年   9篇
  1999年   13篇
  1998年   11篇
  1997年   8篇
  1996年   8篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   3篇
  1958年   3篇
排序方式: 共有809条查询结果,搜索用时 15 毫秒
51.
Extreme climatic events can trigger abrupt and often lasting change in ecosystems via the reduction or elimination of foundation (i.e., habitat‐forming) species. However, while the frequency/intensity of extreme events is predicted to increase under climate change, the impact of these events on many foundation species and the ecosystems they support remains poorly understood. Here, we use the iconic seagrass meadows of Shark Bay, Western Australia – a relatively pristine subtropical embayment whose dominant, canopy‐forming seagrass, Amphibolis antarctica, is a temperate species growing near its low‐latitude range limit – as a model system to investigate the impacts of extreme temperatures on ecosystems supported by thermally sensitive foundation species in a changing climate. Following an unprecedented marine heat wave in late summer 2010/11, A. antarctica experienced catastrophic (>90%) dieback in several regions of Shark Bay. Animal‐borne video footage taken from the perspective of resident, seagrass‐associated megafauna (sea turtles) revealed severe habitat degradation after the event compared with a decade earlier. This reduction in habitat quality corresponded with a decline in the health status of largely herbivorous green turtles (Chelonia mydas) in the 2 years following the heat wave, providing evidence of long‐term, community‐level impacts of the event. Based on these findings, and similar examples from diverse ecosystems, we argue that a generalized framework for assessing the vulnerability of ecosystems to abrupt change associated with the loss of foundation species is needed to accurately predict ecosystem trajectories in a changing climate. This includes seagrass meadows, which have received relatively little attention in this context. Novel research and monitoring methods, such as the analysis of habitat and environmental data from animal‐borne video and data‐logging systems, can make an important contribution to this framework.  相似文献   
52.
Interpretation of light trap catches of moths is complicated by daily variation in weather that alters flight activity and numbers caught. Light trap efficiency is also modified by wind and fog, and daily weather may effect absolute abundance (numbers actually present). However, actograph experiments and other sampling methods suggest that changes in daily activity are large by comparison to changes in absolute abundance. Daily variation in weather (other than wind and fog) is therefore a form of sampling error in absolute abundance estimates. We investigated the extent of this sampling bias in 26 years of population dynamics from 133 moth species. In a subset of 20 noctuid and geometrid species, daily numbers caught were positively correlated with temperature in 14 species, and negatively correlated with rainfall in 11 species. The strength of correlations varied between species, making it difficult to standardize catches to constant conditions. We overcame this by establishing how weather variation changed with time and duration of the flight period. Species flying later in the summer and for shorter periods experienced more variable temperatures, making sampling error greater for these species. Of the 133 moth species, those with shorter flight periods had greater population variability and more showed significant temporal density dependence. However, these effects were weak, which is encouraging because it suggests that population analyses of light trap data largely reflect factors other than sampling error.  相似文献   
53.
54.
Individual variation in alcohol consumption in human populations is determined by genetic, environmental, social and cultural factors. In contrast to humans, genetic contributions to complex behavioral phenotypes can be readily dissected in Drosophila, where both the genetic background and environment can be controlled and behaviors quantified through simple high‐throughput assays. Here, we measured voluntary consumption of ethanol in ~3000 individuals of each sex from an advanced intercross population derived from 37 lines of the Drosophila melanogaster Genetic Reference Panel. Extreme quantitative trait loci mapping identified 385 differentially segregating allelic variants located in or near 291 genes at P < 10?8. The effects of single nucleotide polymorphisms associated with voluntary ethanol consumption are sex‐specific, as found for other alcohol‐related phenotypes. To assess causality, we used RNA interference knockdown or P{MiET1} mutants and their corresponding controls and functionally validated 86% of candidate genes in at least one sex. We constructed a genetic network comprised of 23 genes along with a separate trio and a pair of connected genes. Gene ontology analyses showed enrichment of developmental genes, including development of the nervous system. Furthermore, a network of human orthologs showed enrichment for signal transduction processes, protein metabolism and developmental processes, including nervous system development. Our results show that the genetic architecture that underlies variation in voluntary ethanol consumption is sexually dimorphic and partially overlaps with genetic factors that control variation in feeding behavior and alcohol sensitivity. This integrative genetic architecture is rooted in evolutionarily conserved features that can be extrapolated to human genetic interaction networks.  相似文献   
55.
Vast areas of (sub)arctic tundra are dominated by the ericoid dwarf shrub Empetrum hermaphroditum. Recent experimental and observational data have shown that Empetrum can be damaged heavily by recurrent extreme winter warming. In addition, summer warming leads to increased soil N availability in tundra ecosystems. In a 7‐year experiment, I investigated the recovery of subarctic Empetrum‐dominated tundra vegetation using a factorial combination of various degrees of aboveground Empetrum removal (simulating the damaging effects of extreme winter warming) and N addition (simulating one of the effects of summer warming). After 7 years no new species had established in the plots. The growth of planted Betula nana seedlings was stimulated by Empetrum removal and reduced by N addition. This Empetrum‐dominated tundra ecosystem was resilient against severe disturbances. Only when Empetrum was 100% removed did it fail to recover, and only in combination with high N supply the subordinate species (notably Eriophorum vaginatum and Rubus chamaemorus, a graminoid and a forb) could benefit. In the 50% removal treatment Empetrum recovered in 7 years when no N was supplied and the cover of the subordinate species did not change. However, when N was added Empetrum recovered faster (in 4 years) and the subordinates decreased. When Empetrum was not removed and N was added, Empetrum even increased in abundance at the expense of the subordinate species. Thus, profound changes in tundra ecosystems can only be expected when Empetrum is very heavily damaged as a result of recurrent extreme winter warming and when soil N availability is increased as a result of summer warming. These changes in species composition upon extreme disturbance events may lead to a wide variety of ecosystem feedbacks and cascade processes as this tundra system is relatively species‐poor, and can be hypothesized to have low functional redundancy.  相似文献   
56.
天气指数保险能有效规避传统农业保险的弊端.本研究基于陕西长武长序列产量数据和气象数据,采用统计分析的方法进行种植面积、产量、单产、趋势产量、相对气象产量以及玉米生育期需供水的分析;采用基于损失的风险评估方法评价种植风险;采用基于Logistic模型的费率厘定方法进行纯费率厘定;根据降水指数和减产率的相关性,设计降水指数...  相似文献   
57.
鄱阳湖流域极端降水时空分布和非平稳性特征   总被引:1,自引:0,他引:1  
全球变暖背景下的极端天气气候事件显著增加.本研究基于PreWhitening Mann-Kendall(PWMK)、极点对称模态分解法和广义可加模型,利用鄱阳湖流域1959-2019年16个国家级气象站点的逐日降水数据,从极端降水的强度、频率和持续性3个维度系统检测和分析流域极端降水的时空分布和非平稳性特征.结果 表明...  相似文献   
58.
59.
Marine heatwaves have been observed worldwide and are expected to increase in both frequency and intensity due to climate change. Such events may cause ecosystem reconfigurations arising from species range contraction or redistribution, with ecological, economic and social implications. Macrophytes such as the brown seaweed Fucus vesiculosus and the seagrass Zostera marina are foundation species in many coastal ecosystems of the temperate northern hemisphere. Hence, their response to extreme events can potentially determine the fate of associated ecosystems. Macrophyte functioning is intimately linked to the maintenance of photosynthesis, growth and reproduction, and resistance against pathogens, epibionts and grazers. We investigated morphological, physiological, pathological and chemical defence responses of western Baltic Sea F. vesiculosus and Z. marina populations to simulated near‐natural marine heatwaves. Along with (a) the control, which constituted no heatwave but natural stochastic temperature variability (0HW), two treatments were applied: (b) two late‐spring heatwaves (June, July) followed by a summer heatwave (August; 3HW) and (c) a summer heatwave only (1HW). The 3HW treatment was applied to test whether preconditioning events can modulate the potential sensitivity to the summer heatwave. Despite the variety of responses measured in both species, only Z. marina growth was impaired by the accumulative heat stress imposed by the 3HW treatment. Photosynthetic rate, however, remained high after the last heatwave indicating potential for recovery. Only epibacterial abundance was significantly affected in F. vesiculosus. Hence both macrophytes, and in particular F. vesiculosus, seem to be fairly tolerant to short‐term marine heatwaves at least at the intensities applied in this experiment (up to 5°C above mean temperature over a period of 9 days). This may partly be due to the fact that F. vesiculosus grows in a highly variable environment, and may have a high phenotypic plasticity.  相似文献   
60.
The frequency and magnitude of extreme climate events are increasing with global change, yet we lack predictions and empirical evidence for the ability of wild populations to persist and adapt in response to these events. Here, we used Fisher's Fundamental Theorem of Natural Selection to evaluate the adaptive potential of Lasthenia fremontii, a herbaceous winter annual that is endemic to seasonally flooded wetlands in California, to alternative flooding regimes that occur during El Niño Southern Oscillation (ENSO) events. The results indicate that populations may exhibit greater adaptive potential in response to dry years than wet years, and that the relative performance of populations will change across climate scenarios. More generally, our findings show that extreme climate events can substantially change the potential for populations to adapt to climate change by modulating the expression of standing genetic variation and mean fitness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号