首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18114篇
  免费   746篇
  国内免费   569篇
  19429篇
  2024年   26篇
  2023年   219篇
  2022年   380篇
  2021年   398篇
  2020年   437篇
  2019年   638篇
  2018年   625篇
  2017年   307篇
  2016年   380篇
  2015年   546篇
  2014年   1007篇
  2013年   1239篇
  2012年   637篇
  2011年   1065篇
  2010年   739篇
  2009年   877篇
  2008年   917篇
  2007年   985篇
  2006年   924篇
  2005年   834篇
  2004年   690篇
  2003年   652篇
  2002年   560篇
  2001年   416篇
  2000年   379篇
  1999年   365篇
  1998年   413篇
  1997年   317篇
  1996年   291篇
  1995年   282篇
  1994年   244篇
  1993年   200篇
  1992年   179篇
  1991年   152篇
  1990年   129篇
  1989年   107篇
  1988年   101篇
  1987年   89篇
  1986年   49篇
  1985年   101篇
  1984年   128篇
  1983年   91篇
  1982年   87篇
  1981年   54篇
  1980年   50篇
  1979年   38篇
  1978年   18篇
  1977年   15篇
  1976年   14篇
  1974年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Abstract: Prolactin (PRL) has been reported to activate cellular proliferation in nonreproductive tissue, such as liver, spleen, and thymus. Recently, we have extended the possible role of PRL as a mammalian mitogen by demonstrating a mitogenic effect of PRL in cultured astrocytes. Although the cellular mechanisms by which PRL regulates cell growth are not fully understood, protein kinase C (PKC) has been implicated as one of the transmembrane signaling systems involved in the regulation of PRL-induced cell proliferation in Nb2 lymphoma cells and liver. In the present studies, we examined the possible role of PKC in PRL-induced proliferation of cultured astrocytes. Incubation of cultured astrocytes with 1 nM PRL resulted in a rapid translocation of PKC from the cytosol to the membrane, with maximal PKC activity in the membrane occurring 30 min after exposure to PRL. Translocation of PKC activity occurred over a physiological range of PRL, with maximal PKC activation occurring at 1 nM. At concentrations greater than 10 nM PRL, there was a decrease in the amount of PKC activity associated with the membrane fraction compared with that of cells stimulated with 1 nM PRL. Incubation of astrocytes with PRL in the presence of the PKC inhibitors staurosporine, 1-(-5-isoquinolinesulfonyl)-2-methylpiperazine, or polymyxin B blocked the PRL-induced increase in cell number with IC50 values of approximately 2 nM, 10 μM, and 6 μM, respectively. PKC is the only known cellular receptor for 12-O-tetradecanoylphorbol 13-acetate (TPA), which stimulates the translocation of PKC from the cytosol to the membrane. Incubation of astrocytes with 20 nM TPA resulted in an increase in the expression of proliferating cell nuclear antigen and cell number, whereas 4α-phorbol 12,13-didecanoate, an inactive phorbol ester, was ineffective. To examine further the effect of TPA and PRL on cellular proliferation, cultured astrocytes were incubated with increasing concentrations of TPA in the presence or absence of a minimal effective dose of PRL (100 pM). In the absence of PRL, incubation with TPA resulted in an inverted U-shaped dose-response curve, with 100 nM TPA resulting in a maximal increase in cell number. In the presence of 100 pM PRL, the TPA dose-response curve was shifted to the left, with maximal activity occurring with 10 nM TPA. Chronic stimulation of astrocytes with 500 nM TPA depleted the cells of PKC and blocked the PRL-induced increase in cell number. Finally, TPA treatment decreased cell-surface binding of 125I-PRL. These data indicate that the PKC is involved in the mitogenic effect of PRL in cultured astrocytes.  相似文献   
92.
Light-limited cultures of the marine diatom Thalassiosira pseudonana (Hustedt) Hasle and Heimdal (3H clone) were grown over a range of growth rates between 0.06 and 1.64 d?1. Variations in cell volume, cell quotas of carbon, nitrogen, and protein, and maximal activity of the enzyme nucleoside diphosphate kinase (NDPK) were measured and examined as a function of growth rate. NDPK from T. pseudonana showed Km values of 0.24 and 0.68 mM for thymidine 5′-diphosphate and adenosine 5′-triphosphate (ATP), respectively, which are similar to those found for NDPK from a variety of organisms, from bacteria to mammals. An apparent activation enthalpy of 3.52 kCal·mol?1 was determined from Arrhenius plots. No thermodynamic transition points were noted over a temperature range from 10° to 25°C. NDPK activity was significantly correlated with growth rate but not with cell volume, carbon, nitrogen, or protein; for interspecific comparisons, normalization of enzyme activity to cell number may be most meaningful. NDPK activity per cell versus growth rate followed a U-shaped relationship, being relatively constant between 0.5 and 1.0 d?1 and rising at higher and lower growth rates. Over this range, enzyme activity may be regulated by substrate concentration (ATP or other nucleoside triphosphates) or by adenylate energy charge. At higher growth rates where energy charge and substrate concentrations are probably high, changes in enzyme concentration appear to be required. The reasons for a rise in enzyme activity at low growth rate is unclear. Simultaneous measurement of nucleoside di- and triphosphate levels alongside NDPK measurements may help clarify the relationship, but these preliminary experiments indicate that NDPK is of limited usefulness as an index of in situ growth rate.  相似文献   
93.
The signal transduction initiated by the human cytokine interleukin-8 (IL-8), the main chemotactic cytokine for neutrophils, was investigated and found to encompass the stimulation of protein kinases. More specifically, IL-8 caused a transient, dose and time dependent activation of a Ser/Thr kinase activity towards myelin basic protein (MBP) and the MBP-derived peptide APRTPGGRR patterned after the specific concensus sequence in MBP for ERK enzymes. The activated MBP kinase was furthermore identified as an extracellular signal regulated kinase (ERK1) based on several criteria such as substrate specificity, molecular weight, activation-dependent mobility shift, and recognition by anti-ERK antibodies. For comparison, the chemotactic response of neutrophils to a stimulus of bacterial origin (fMet-Leu-Phe or fMLP) was also examined and found to involve the activation of a similar ERK enzyme. The present data clearly indicate that in terminally differentiated, non-proliferating human cells, the MBP kinase/ERK activity can serve other purposes than mitogenic signaling, and that processes such as chemotaxis, induced by bacterial peptides as well as by human cytokines like IL-8, involve the regulation of ERK enzyme.Abbreviations IL-8 interleukin-8 - fMLP fMet-Leu-Phe - MBP myelin basic protein - ERK extracellular signal regulated kinase - MAP2 microtubule-associated protein 2 - PK-A cAMP dependent protein kinase - PKI protein kinase inhibitor - PMSF phenyl-methanesulfonyl fluoride - PVDF poly-vinylidene difluoride - HBSF Hank's buffered salt solution - DAB 3,3-diaminobenzidine tetrahydrochloride - PNPP p-nitrophenyl-phosphate - HSA human serum albumin - EGTA [ethylenebis (oxyethylenenitrilo)]tetraacetic acid - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   
94.
The insulin receptor (IR) tyrosine kinase can apparently directly phosphorylate and activate one or more serine kinases. The identities of such serine kinases and their modes of activation are still unclear. We have described a serine kinase (here designated insulin receptor serine (IRS) kinase) from rat liver membranes that co-purifies with IR on wheat germ agglutinin-agarose. The kinase was activated after phosphorylation of the membrane glycoproteins by casein kinase-1, casein kinase-2, or casein kinase-3 (Biochem Biophys Res Commun 171:75–83, 1990). In this study, IRS kinase was further characterized. The presence of vanadate or phosphotyrosine in reaction mixtures was required for activation to be observed. Phosphoserine and phosphothreonine are only about 25% as effective as phosphotyrosine, whereas sodium fluoride and molybdate were ineffective in supporting activation. Vanadate and phosphotyrosine support IRS kinase activation by apparently inhibiting phosphotyrosine protein phosphatases present among the membrane glycoproteins. IR -subunit, myelin basic protein, and microtubule-associated protein-2 are good substrates for IRS kinase. The kinase prefers Mn2+ (Ka=1.3 mM) as a metal cofactor. Mg2+ (Ka=3.3 mM) is only 30% as effective as Mn2+. The kinase activity is stimulated by basic polypeptides, with greater than 30-fold activation achieved with polylysine and protamine. Our results suggest that both serine/threonine and tyrosine phosphorylation are required for activation of IRS kinase. Serine phosphorylation is catalyzed by one of the casein kinases, whereas tyrosine phosphorylation is catalyzed by a membrane tyrosine kinase, possibly IR tyrosine kinase. (Mol Cell Biochem121: 167–174, 1993)  相似文献   
95.
The IGFs (IGF-I and IGF-II) are essential for normal mammalian growth and development. Their actions are mediated primarily by their interactions with the type I IGF receptor (IGF-I receptor), a transmembrane tyrosine kinase. The ligands and the IGF-I receptor are structurally related to insulin and to the insulin receptor, respectively. Analysis of evolutionary conservation has often provided insights into essential regions of molecules such as hormones and their receptors. The genes for insulin and IGFs have been partially characterized in a number of vertebrate species extending evolutionarily from humans as far back as fish. The sequences of the exons encoding the mature insulin and IGF peptides are highly conserved among vertebrate species, and IGF-I-Iike molecules are found in species whose origins extend back as much as 550 million years. The insulin receptor is also highly conserved in vertebrate species, and an insulinreceptor-like molecule has been characterized in Drosophila. In contrast, IGF-I receptors have only been characterized in mammalian species and partially studied in Xenopus, in which the tyrosine kinase domain is highly conserved. Studies are presently being undertaken to analyze in more detail the regulation of the genes encoding this important family of growth factors and the structure/function relationships in the gene products themselves. © 1993 Wiley-Liss, Inc.  相似文献   
96.
We have studied the role of second messenger and protein phosphorylation pathways in mediating changes in neuronal function associated with opiate addiction in the rat locus coeruleus. We have found that chronic opiates increase levels of the G-protein subunits Gi and Go, adenylate cyclase, cyclic AMP-dependent protein kinase, and a number of phosphoproteins (including tyrosine hydroxylase) in this brain region. Electrophysiological data have provided direct support for the view that this up-regulation of the cyclic AMP system contributes to opiate tolerance, dependence, and withdrawal exhibited by these neurons. As the adaptations in G-proteins and the cyclic AMP system appear to occur at least in part at the level of gene expression, current efforts are aimed at identifying the mechanisms, at the molecular level, by which opiates regulate the expression of these intracellular messenger proteins in the locus coeruleus. These studies will lead to an improved understanding of the biochemical basis of opiate addiction.Special issue dedicated to Dr. Paul Greengard  相似文献   
97.
98.
99.
100.
Fibronectin (FN) turnover and turnover changes induced by the anticancer drug Adriamycin (ADR) were measured in human mesangial cells (HMC) in vitro. HMC cultures synthesize cellular FN (2.2+-0.3% of totalprotein synthesis; n = 12) which is secreted and incorporated into a fibrillar extracellular matrix (ECM). A 24 hr incubation of HMC with ADR (0.5–5 g/ml) resulted in an accumulation of FN in the culture medium, with a maximum increase following 5 pglml(7.3+-2.3pg/cell vs. controls: 4.4+-1.9pg/cell; n= 10). Correspondingly, radioactively labeled immunoprecipitable FN was increased in a dosage-dependent manner in the culture medium up to 50% vs. controls. The incorporation of radioactively labeled FN into ECM was significantly increased following 2 g ADR/ml. In accordance, immunofZuorescence staining revealed an expansion ofpericellular FNfibers in cultures exposed to 2 g ADR/ml. Concomitant with the accumulation of extracelhlar FN, radioactively labeled FN in the cells was reduced by 22%. Qualitative characterization of FN patterns revealed a diminished number of degradation products in the culture medium ofADR-treated HMC. These data suggest thatADR interferes with the turnover of FN secreted by HMC in vitro in such a way that FN accumulates extracellularly. This in turn leads to a reduced FN synthesis. These findings are compatible with a loss of urinary FN degradation products accompanying the onset ofproteinuria in ADR-treated rats.Abbreviations ADR adriamycin - BSA bovine serum albumin - DTT dithiothreitol - ECM extracellular matrix - EDTA ethylenediamine tetraacetic acid disodium salt - ELISA enzyme-linked immunosorbent assay - FCS fetal calf serum - FITC fluorescein isothiocyanate - FN fibronectin - HMC human mesangial cell - PBS phosphate buffered saline - PMSF phenylmethylsulfonyl fluoride - SDS sodium dodecyl sulfate - SDS-PAGE SDS-polyacrylamide gel electrophoresis  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号