首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7942篇
  免费   378篇
  国内免费   432篇
  8752篇
  2024年   16篇
  2023年   140篇
  2022年   178篇
  2021年   214篇
  2020年   244篇
  2019年   297篇
  2018年   247篇
  2017年   181篇
  2016年   164篇
  2015年   209篇
  2014年   389篇
  2013年   502篇
  2012年   267篇
  2011年   408篇
  2010年   274篇
  2009年   332篇
  2008年   380篇
  2007年   363篇
  2006年   348篇
  2005年   293篇
  2004年   206篇
  2003年   219篇
  2002年   203篇
  2001年   178篇
  2000年   182篇
  1999年   131篇
  1998年   146篇
  1997年   128篇
  1996年   133篇
  1995年   119篇
  1994年   122篇
  1993年   135篇
  1992年   124篇
  1991年   117篇
  1990年   111篇
  1989年   91篇
  1988年   83篇
  1987年   73篇
  1986年   66篇
  1985年   97篇
  1984年   100篇
  1983年   94篇
  1982年   108篇
  1981年   90篇
  1980年   75篇
  1979年   58篇
  1978年   21篇
  1977年   25篇
  1976年   28篇
  1974年   15篇
排序方式: 共有8752条查询结果,搜索用时 11 毫秒
991.
Human retinal pigmented epithelial cell (hRPE) proliferation plays a significant role in various proliferative diseases associated to the retina that leads to loss of vision, such as proliferative vitreoretinopathy. In the current study, the role of the bovine vitreous lipid factor (bVLF) in hRPE cell proliferation has been investigated. bVLF is a bioactive lipid isolated from the bovine vitreous body with strong Ca(2+)-mobilizing activity in fibroblast. In the first approach, the effects of bVLF on Ca(2+)-mobilizing activity were investigated in hRPE. The results showed that bVLF induced, in a dose-dependent manner, a Ca(2+) mobilization from PA-sensitive intracellular stores [non-Ins(1,4,5)P(3)-sensitive stores], in which extracellular Ca(2+) participated. The increase in intracellular Ca(2+) was associated with a dose-dependent inhibiting effect on cell proliferation. At a dose of 10 microg/mL, bVLF caused a 26% or a 44% inhibition in hRPE cell proliferation during the 3- or the 6-day culture periods, respectively. These effects appear to be specific in hRPE cells, since EFGR-T17 fibroblast cells treated with equivalent amounts of bVLF did not show any inhibiting effects. This inhibitory action was not associated to apoptotic/necrotic processes. Furthermore, bVLF inhibited EGF-, bFGF-, IGF-I-, PDGF-, HGF- and VEGF-induced proliferation of the hRPE cells. Moreover, this inhibitory response was also observed in FBS-induced hRPE cell proliferation. bVLF, at a concentration of 10 microg/mL, induced 16% inhibition of proliferation during a culture period of 3 days. This inhibitory action was greater during the 6-day culture period, exceeding 40%. With regard to this action, the results showed that bVLF has a potent inhibitory effect on ERK1/2 activation, and plays a key role in the control of hRPE cell proliferation. These observations contribute to the knowledge of inhibitory factors responsible for keeping antiproliferative environment that preserve the RPE-associated activities in normal states. It advances the interesting possibility that this factor or a factor with characteristics common to bVLF might be involved in the pathogenesis of abnormal proliferative eye processes.  相似文献   
992.
Song P  Wei J  Wang HC 《FEBS letters》2005,579(1):90-94
Ectopic expression of oncogenic H-Ras in cells results in increases of cell susceptibility to the anticancer agent FR901228. Investigating the roles of Ras-induced pathways in FR901228-induced apoptosis, we have found that the phosphatidylinositol 3-kinase pathway plays an anti-apoptotic role, whereas the stress-activated protein kinase p38 pathway plays a pro-apoptotic role in FR901228-induced apoptosis. Interestingly, the extracellular signal-regulated kinase (ERK) pathway plays an anti-apoptotic role in non-transformed cells; however, it plays a pro-apoptotic role in Ras-transformed cells in response to FR901228 treatment. An essential role of the ERK pathway in regulating caspase-3 contents may contribute to its pro-apoptotic role in Ras-transformed cells.  相似文献   
993.
Gonon EM  Skalski M  Kean M  Coppolino MG 《FEBS letters》2005,579(27):6169-6178
In the present study, we examined the role of soluble NSF attachment protein receptor (SNARE)-mediated membrane traffic in the formation of focal adhesions during cell spreading. CHO-K1 cells expressing a dominant-negative form of N-ethylmaleimide-sensitive factor (E329Q-NSF) were unable to spread as well as control cells and they formed focal adhesions (FAs) that were larger than those in control cells. FA formation was impaired in cells transfected with a dominant-negative form of RhoA, but, significantly, not in cells simultaneously expressing dominant-negative NSF. Treatment of E329Q-NSF-expressing cells with the ROCK inhibitor Y-27632 did inhibit FA formation. The results are consistent with a model of cell adhesion in which SNARE-mediated membrane traffic is required for both the elaboration of lamellipodia and the modulation of biochemical signals that control RhoA-mediated FA assembly.  相似文献   
994.
Prion diseases are characterised by severe neural lesions linked to the presence of an abnormal protease-resistant isoform of cellular prion protein (PrPc). The peptide PrP(106-126) is widely used as a model of neurotoxicity in prion diseases. Here, we examine in detail the intracellular signalling cascades induced by PrP(106-126) in cortical neurons and the participation of PrPc. We show that PrP(106-126) induces the activation of subsets of intracellular kinases (e.g., ERK1/2), early growth response 1 synthesis and induces caspase-3 activity, all of which are mediated by nicotinamide adenine dinucleotide phosphate hydrogen-oxidase activity and oxidative stress. However, cells lacking PrPc are similarly affected after peptide exposure, and this questions the involvement of PrPc in these effects.  相似文献   
995.
Kang KA  Lee KH  Chae S  Zhang R  Jung MS  Lee Y  Kim SY  Kim HS  Joo HG  Park JW  Ham YM  Lee NH  Hyun JW 《FEBS letters》2005,579(28):6295-6304
We have investigated the cytoprotective effect of eckol, which was isolated from Ecklonia cava, against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Eckol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, eckol reduced H(2)O(2) induced cell death in V79-4 cells. In addition, eckol inhibited cell damage induced by serum starvation and radiation by scavenging ROS. Eckol was found to increase the activity of catalase and its protein expression. Further, molecular mechanistic study revealed that eckol increased phosphorylation of extracellular signal-regulated kinase and activity of nuclear factor kappa B. Taken together, the results suggest that eckol protects V79-4 cells against oxidative damage by enhancing the cellular antioxidant activity and modulating cellular signal pathway.  相似文献   
996.
He Y  Tang H  Yi Z  Zhou H  Luo Y 《FEBS letters》2005,579(6):1503-1508
To examine the effect of aggregation sequence QGGYQQQYNP from yeast Sup35 on fibril formation of sperm whale apomyoglobin (apoMb), we constructed several mutants via substitution. Urea-induced unfolding of apoMb confirms that the substitution of the aggregation sequence does not significantly affect the stability of the mutants compared to wild type (WT) at pH 4.2. Under this condition, however, despite the difference in rate most apoMb mutants form fibrils more readily than WT with distinct morphology. These results suggest that the aggregation sequence facilitates fibril assembly of apoMb at acidic pH in vitro and this facilitation depends on the regions replaced.  相似文献   
997.
The cellular and extracellular matrix accumulations that comprise the lesions of atherosclerosis are driven by local release of cytokines at sites of predilection for lesion formation, and by the specific attraction and activation of cells expressing receptors for these cytokines. Although cytokines were originally characterized for their potent effects on immune and inflammatory cells, they also promote endothelial cell dysfunction and alter smooth muscle cell (SMC) phenotype and function, which can contribute to or retard vascular pathologies. This review summarizes in vivo studies that have characterized endothelial- and smooth muscle-specific effects of altering cytokine signaling in vascular disease. Although multiple reports have identified cytokines as pivotal players in endothelial and SMC responses in vascular disease, they also have highlighted the need to delineate the critical genes and specific cellular functions regulated by individual cytokine signaling pathways.  相似文献   
998.
Retention of lipoproteins to proteoglycans in the subendothelial matrix (SEM) is an early event in atherosclerosis. We recently reported that collagen XVIII and its proteolytically released fragment endostatin (ES) are differentially depleted in blood vessels affected by atherosclerosis. Loss of collagen XVIII/ES in atherosclerosis-prone mice enhanced plaque neovascularization and increased the vascular permeability to lipids by distinct mechanisms. Impaired endothelial barrier function increased the influx of lipoproteins across the endothelium; however, we hypothesized that enhanced retention might be a second mechanism leading to the increased lipid content in atheromas lacking collagen XVIII. We now demonstrate a novel property of ES that binds both the matrix proteoglycan biglycan and LDL and interferes with LDL retention to biglycan and to SEM. A peptide encompassing the alpha coil in the ES crystal structure mediates the major blocking effect of ES on LDL retention. ES inhibits the macrophage uptake of biglycan-associated LDL indirectly by interfering with LDL retention to biglycan, but it has no direct effect on the macrophage uptake of native or modified lipoproteins. Thus, loss of ES in advanced atheromas enhances lipoprotein retention in SEM. Our data reveal a third protective role of this vascular basement membrane component during atherosclerosis.  相似文献   
999.
Cell-free translation systems generally utilize high-energy phosphate compounds to regenerate the adenosine triphosphate (ATP) necessary to drive protein synthesis. This hampers the widespread use and practical implementation of this technology in a batch format due to expensive reagent costs; the accumulation of inhibitory byproducts, such as phosphate; and pH change. To address these problems, a cell-free protein synthesis system has been engineered that is capable of using pyruvate as an energy source to produce high yields of protein. The "Cytomim" system, synthesizes chloramphenicol acetyltransferase (CAT) for up to 6 h in a batch reaction to yield 700 microg/mL of protein. By more closely replicating the physiological conditions of the cytoplasm of Escherichia coli, the Cytomim system provides a stable energy supply for protein expression without phosphate accumulation, pH change, exogenous enzyme addition, or the need for expensive high-energy phosphate compounds.  相似文献   
1000.
In this study an enrichment culture developed from activated sludge was used to investigate the architecture of fully hydrated multispecies biofilms. The assessment of biofilm structure and volume was carried out using confocal laser scanning microscopy (CLSM). Bacterial cell distribution was determined with the nucleic acid-specific stain SYTO 60, whereas glycoconjugates of extracellular polymeric substances (EPS) were stained with the Alexa-488-labeled lectin of Aleuria aurantia. Digital image analysis was employed for visualization and quantification of three-dimensional CLSM data sets. The specific volumes of the polymeric and cellular biofilm constituents were quantified. In addition, gravimetric measurements were done to determine dry mass and thickness of the biofilms. The data recorded by the CLSM technique and the gravimetric data were then compared. It was shown that the biofilm thicknesses determined with both methods agree well for slow-growing heterotrophic and chemoautotrophic biofilms. In addition, for slow-growing biofilms, the volumes and masses calculated from CLSM and the biomass calculated from gravimetric measurements were also comparable. For fast-growing heterotrophic biofilms cultivated with high glucose concentrations the data sets fit to a lesser degree, but still showed the same common trend. Compared with traditional gravimetric measurements, CLSM allowed differential recording of multiple biofilm parameters with subsequent three-dimensional visualization and quantification. The quantitative three-dimensional results recorded by CLSM are an important basis for understanding, controlling, exploiting, and modeling of biofilms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号