首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10787篇
  免费   1496篇
  国内免费   633篇
  12916篇
  2024年   62篇
  2023年   153篇
  2022年   214篇
  2021年   267篇
  2020年   506篇
  2019年   542篇
  2018年   616篇
  2017年   475篇
  2016年   519篇
  2015年   480篇
  2014年   536篇
  2013年   815篇
  2012年   333篇
  2011年   450篇
  2010年   386篇
  2009年   448篇
  2008年   500篇
  2007年   482篇
  2006年   466篇
  2005年   463篇
  2004年   367篇
  2003年   372篇
  2002年   357篇
  2001年   244篇
  2000年   213篇
  1999年   219篇
  1998年   241篇
  1997年   196篇
  1996年   148篇
  1995年   182篇
  1994年   163篇
  1993年   132篇
  1992年   152篇
  1991年   135篇
  1990年   120篇
  1989年   129篇
  1988年   111篇
  1987年   93篇
  1986年   69篇
  1985年   107篇
  1984年   104篇
  1983年   56篇
  1982年   66篇
  1981年   55篇
  1980年   51篇
  1979年   38篇
  1978年   21篇
  1977年   20篇
  1976年   19篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
S. A. Munks  B. Green 《Oecologia》1995,101(1):94-104
This study examines the annual energetics of a small folivorous marsupial, Pseudocheirus peregrinus. Particular attention was given to the energy and time allocated to reproduction by the females. Daily energy expenditure was measured directly using the doubly labelled water technique. Energy transferred to the young via the milk was estimated from information on milk composition and production. There was no significant seasonal variation in the energy expenditure or water influx of males or females. The mean daily energy expenditure of a 1-kg non-lactating adult ringtail possum was 615 kJ day–1 or 2.2 times standard metabolic rate. Females showed significant changes in daily energy expenditure according to their reproductive status. Without the burden of lactation the total annual energy expenditure of an adult female was estimated as 212.4 MJ kg–1 year–1. The total annual energy expenditure of a female rearing two young was 247.5 MJ kg–1 year–1, with the late stage of lactation constituting the most energetically expensive period accounting for 30% of the total yearly energy expenditure during 24% of the time. Total metabolisable energy allocation during reproduction (22 MJ kg) was similar to estimates available for other herbivores, although, the peak metabolisable energy allocation during lactation (759 kJ day–1) was lower than values available for other herbivores. The total energy requirement for reproduction (metabolisable energy plus potential energy exported to young via milk) suggests that the ringtail possum also has a relatively low overall energy investment in reproduction. It is suggested that the lactational strategy of the ringtail possum has been selected in order to spread the energy demands of reproduction over time due to constraints on the rate of energy intake imposed by a leaf diet and/or to prolong the mother-young bond. The strategies a female ringtail possum may employ to achieve energy balance when faced with the energy demands of reproduction are discussed.  相似文献   
102.
Carbohydrate and energy metabolism of the flooding- and anoxia-tolerant Iris pseudacorus and the intolerant Iris germanica rhizomes were investigated under experimental anoxic conditions. Rhizomes of I. pseudacorus and I. Germanica were incubated in the absence of oxygen from 0 to 60 and 16 days, respectively. Amounts of glucose, total reducing sugars and non-reducing sugars (starch, fructan and oligosaccharides) in the rhizomes were measured. Ethanol concentration and adenylate energy charge were determined enzymatically. Glucose content of I. pseudacorus rhizomes decreased gradually during the first 30 days under anoxia and then increased at the same time as adenylate energy charge values started to decline. In I. germanica rhizomes the changes were more dramatic and the time scale was much shorter than in I. pseudacorus but the changes were similar. Non-reducing sugar content of I. pseudacorus rhizomes decreased rapidly during the first 15 days under oxygen deprivation and then increased again, to near starting levels at 35 days. In I. germanica the amount of non-reducing sugars decreased gradually during the anoxic incubation. Under aerobic control conditions, adenylate energy charge (AEC) of I. pseudacorus and I. germanica rhizome tissue was 0.87±0.01 and 0.81±0.01, respectively. In I. pseudacorus AEC remained high until 30 days under anoxia. In contrast, the energy charge of I. germanica rhizome tissue remained above 0.6 for 4 days only. Large amounts of ethanol were found in anoxic rhizome tissues of I. pseudacorus (up to 0.21 M ) and I. germanica (0.06 M ) after 45 days and 8 days, respectively. The results are discussed in relation to flooding tolerance of these species.  相似文献   
103.
Aarnio  T.  Derome  J.  Martikainen  P. J. 《Plant and Soil》1995,168(1):523-531
The effects of slow and fast-release fertilizers (P, K, Mg) on the movement and availability of nutrients in acid forest soil were studied. Fast-release superphosphate, potassium chloride and magnesium sulphate and slow-release apatite (P) and biotite (K, Mg) were applied alone or together with urea or urea+limestone. The nutrient content in the organic horizon was determined one growing season and three growing seasons after the application, and in the mineral layer after one growing season. The movement of nutrient ions in the organic horizon was studied by an ion exchange resin bag method during a 5-month period following application. The fast-release salts immediately increased the soluble P and exchangeable K and Mg contents in the organic and mineral soils and in the resin bags. After three growing seasons the effect of K application in the organic layer was non-detectable and that of P had clearly diminished. Apatite gradually increased soluble P content in the organic layer, but biotite had only a minor effect on the K and Mg contents. The nutrients from the fast-release fertilizers had clearly become available and mobile in the year of application and were thus susceptible to leaching. The rate of nutrient release from apatite and biotite is slower and the added nutrients are retained in the organic horizon. Slow-release compounds, like apatite and biotite, might be potential fertilizers for counteracting acidic deposition and subsequent nutrient losses.  相似文献   
104.
Conformational studies have been carried out on hydrogenbonded all-trans cyclic pentapeptide backbone. Application of a combination of grid search and energy minimization on this system has resulted in obtaining 23 minimum energy conformations, which are characterized by unique patterns of hydrogen bonding comprising of β- and γ-turns. A study of the minimum energy conformationsvis-a-vis non-planar deviation of the peptide units reveals that non-planarity is an inherent feature in many cases. A study on conformational clustering of minimum energy conformations shows that the minimum energy conformations fall into 6 distinct conformational families. Preliminary comparison with available X-ray structures of cyclic pentapeptide indicates that only some of the minimum energy conformations have formed crystal structures. The set of minimum energy conformations worked out in the present study can form a consolidated database of prototypes for hydrogen bonded backbone and be useful for modelling cyclic pentapeptides both synthetic and bioactive in nature. This is part XV of the series. Part XIV in this series is Ramakrishnanet al 1987.  相似文献   
105.
Seasonal variation in direct and indirect measures of energy status was examined using estimates of glycogen, lipid and protein levels in a single cohort of male three-spined sticklebacks from an annual population collected each month over one complete year. Condition factor, somatic condition factor and hepatosomatic index (HSI) were calculated as indirect indices of energy status and the accuracy of these indirect measures as predictors of energy status was investigated. Results indicate that both condition factors were significant predictors of energy reserves (lipid, protein, glycogen and total energy), but that the proportion of variance accounted for was small. Both condition factors perform better as predictors of energy content per unit body weight. The HSI was a significant, but a weak predictor of total glycogen levels over the whole year. On a seasonal basis the relationship between HSI and energy reserves was highly variable. These indices are therefore poor predictors of energy reserves in male three-spined sticklebacks.  相似文献   
106.
Continuous segments of amino acid sequence information as long as 41 residues have been deduced by interpretation of matrix-assisted laser desorption/ionization-generated ion signals dominated by Cn fragmentation within the ion source of a linear time-of-flight mass spectrometer utilizing delayed ion extraction. The technique has been applied successively to five proteins of mass 12.2 kDa to 18.3 kDa, yielding segments of continuous sequence as long as 41 residues without the need for prior proteolytic fragmentation. Intact crosslinks such as disulfides or heme linkages interrupt the generation of these data.  相似文献   
107.
Physical effects of negative air ions in a wet sauna   总被引:10,自引:0,他引:10  
 The physical effects of negative air ions on humans were determined in an experimental sauna room equipped with an ionizer. Thirteen healthy persons took a wet sauna bath (dry bulb temperature 42° C, relative humidity 100%, 10 min exposure) with or without negative air ions. The subjects were not told when they were being exposed to negative air ions. There were no differences in the moods of these persons or changes in their blood pressures between the two saunas. The surface temperatures of the foreheads, hands, and legs in the sauna with negative ions were significantly higher than those in the sauna without ions. The pulse rates and sweat produced in the sauna with ions were singificantly higher than those in the sauna without ions. The results suggest that negative ions may amplify the effects on humans of the sauna. Received: 31 March 1995 / Revised: 25 July 1995 / Accepted: 26 July 1996  相似文献   
108.
Secondary metabolic-energy-generating systems generate a proton motive force (pmf) or a sodium ion motive force (smf) by a process that involves the action of secondary transporters. The (electro)chemical gradient of the solute(s) is converted into the electrochemical gradient of protons or sodium ions. The most straightforward systems are the excretion systems by which a metabolic end product is excreted out of the cell in symport with protons or sodium ions (energy recycling). Similarly, solutes that were accumulated and stored in the cell under conditions of abundant energy supply may be excreted again in symport with protons when conditions become worse (energy storage). In fermentative bacteria, a proton motive force is generated by fermentation of weak acids, such as malate and citrate. The two components of the pmf, the membrane potential and the pH gradient, are generated in separate steps. The weak acid is taken up by a secondary transporter either in exchange with a fermentation product (precursor/product exchange) or by a uniporter mechanism. In both cases, net negative charge is translocated into the cell, thereby generating a membrane potential. Decarboxylation reactions in the metabolic breakdown of the weak acid consume cytoplasmic protons, thereby generating a pH gradient across the membrane. In this review, several examples of these different types of secondary metabolic energy generation will be discussed.  相似文献   
109.
110.
The enantiomers of rac-2,2′-diiodobiphenyl were separated by liquid chromatography on microcrystalline triacetylcellulose. The conformational lability, a large separation factor α, and a suitable capacity factor k′(+) of this biphenyl allowed us to convert the racemate into 90% of enantiomerically pure (-)-2,2′-diiodobiphenyl and 10% of pure (+)-2,2′-diiodobiphenyl, respectively, by a series of in situ racemization-elution cycles. The much better retained (+)-enantiomer was racemized on the chromatographic column at 50°C after the less retained (-)-enantiomer has already been eluted at 8°C. © 1995 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号