首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3132篇
  免费   384篇
  国内免费   273篇
  3789篇
  2024年   7篇
  2023年   63篇
  2022年   65篇
  2021年   94篇
  2020年   105篇
  2019年   121篇
  2018年   132篇
  2017年   128篇
  2016年   140篇
  2015年   148篇
  2014年   171篇
  2013年   246篇
  2012年   145篇
  2011年   165篇
  2010年   157篇
  2009年   165篇
  2008年   169篇
  2007年   177篇
  2006年   146篇
  2005年   153篇
  2004年   96篇
  2003年   101篇
  2002年   75篇
  2001年   73篇
  2000年   65篇
  1999年   57篇
  1998年   75篇
  1997年   42篇
  1996年   48篇
  1995年   45篇
  1994年   48篇
  1993年   39篇
  1992年   36篇
  1991年   32篇
  1990年   17篇
  1989年   21篇
  1988年   17篇
  1987年   18篇
  1986年   19篇
  1985年   26篇
  1984年   25篇
  1983年   10篇
  1982年   19篇
  1981年   17篇
  1980年   22篇
  1979年   8篇
  1978年   11篇
  1977年   6篇
  1976年   9篇
  1972年   4篇
排序方式: 共有3789条查询结果,搜索用时 15 毫秒
101.
Abstract:  Palaeodiversity curves are constructed from counts of fossils collected at outcrop and thus potentially biased by variation in the rock record, specifically by the amount of sedimentary rock representative of different time intervals that has been preserved at outcrop. To investigate how much of a problem this poses we have compiled a high-resolution record of marine rock outcrop area in Western Europe for the Phanerozoic and use this to generate a model that predicts the sampled diversity curve. We find that we can predict with high accuracy the variance of the marine genus diversity curve (itself dominated by European taxa) from rock outcrop data and a three-step model of diversity that tracks supercontinent fragmentation, coalescence and fragmentation. The size and position of two of the five major mass extinction spikes are largely predicted by rock outcrop data. We conclude that the long-term trends in taxonomic diversity and the end-Cretaceous extinction are not the result of rock area bias, but cannot rule out that rock outcrop area bias explains many of the short-term rises and falls in sampled diversity that palaeontologists have previously sought to explain biologically.  相似文献   
102.
We demonstrate the use of the near‐infrared attenuation coefficient, measured using optical coherence tomography (OCT), in longitudinal assessment of hypertrophic burn scars undergoing fractional laser treatment. The measurement method incorporates blood vessel detection by speckle decorrelation and masking, and a robust regression estimator to produce 2D en face parametric images of the attenuation coefficient of the dermis. Through reliable co‐location of the field of view across pre‐ and post‐treatment imaging sessions, the study was able to quantify changes in the attenuation coefficient of the dermis over a period of ~20 weeks in seven patients. Minimal variation was observed in the mean attenuation coefficient of normal skin and control (untreated) mature scars, as expected. However, a significant decrease (13 ± 5%, mean ± standard deviation) was observed in the treated mature scars, resulting in a greater distinction from normal skin in response to localized damage from the laser treatment. By contrast, we observed an increase in the mean attenuation coefficient of treated (31 ± 27%) and control (27 ± 20%) immature scars, with numerical values incrementally approaching normal skin as the healing progressed. This pilot study supports conducting a more extensive investigation of OCT attenuation imaging for quantitative longitudinal monitoring of scars.

En face 2D OCT attenuation coefficient map of a treated immature scar derived from the pre‐treatment (top) and the post‐treatment (bottom) scans. (Vasculature (black) is masked out.) The scale bars are 0.5 mm.  相似文献   

103.
104.
105.
Demands for development of biological therapies is rapidly increasing, as is the drive to reduce time to patient. In order to speed up development, the disposable Automated Microscale Bioreactor (Ambr 250) system is increasingly gaining interest due to its advantages, including highly automated control, high throughput capacity, and short turnaround time. Traditional early stage upstream process development conducted in 2 ‐ 5 L bench‐top bioreactors requires high foot‐print, and running cost. The establishment of the Ambr 250 as a scale‐down model leads to many benefits in process development. In this study, a comprehensive characterization of mass transfer coefficient (kLa) in the Ambr 250 was conducted to define optimal operational conditions. Scale‐down approaches, including dimensionless volumetric flow rate (vvm), power per unit volume (P/V) and kLa have been evaluated using different cell lines. This study demonstrates that the Ambr 250 generated comparable profiles of cell growth and protein production, as seen at 5‐L and 1000‐L bioreactor scales, when using kLa as a scale‐down parameter. In addition to mimicking processes at large scales, the suitability of the Ambr 250 as a tool for clone selection, which is traditionally conducted in bench‐top bioreactors, was investigated. Data show that cell growth, productivity, metabolite profiles, and product qualities of material generated using the Ambr 250 were comparable to those from 5‐L bioreactors. Therefore, Ambr 250 can be used for clone selection and process development as a replacement for traditional bench‐top bioreactors minimizing resource utilization during the early stages of development in the biopharmaceutical industry. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:478–489, 2017  相似文献   
106.
The importance of inbreeding avoidance for the fitness of individualsis currently undergoing reevahation. Especially when the frequencyof inbreeding is low, it may be difficult to accumulate sufficientinformation. In a long-term study of the Mexican jay (Aphelocomaultamarina) in Arizona, we found inbreeding, as determined bypedigree, to be rare even though this species exhibits strongnatal philopatry and commonly lives in social groups of closerelatives. Brood sizes of inbred pairs were significantly lowerthan those of outbred pairs, suggesting hatching failure; butthere was no difference in die probability that one or moreyoung would fledge from a nest. Survival of inbred nestlingsto die next year was significantly lower than that of outbrednestlings.  相似文献   
107.
108.
109.
It has been well-established that many epiphytic bromeliads of the atmospheric-type morphology, i.e., with leaf surfaces completely covered by large, overlapping, multicellular trichomes, are capable of absorbing water vapor from the atmosphere when air humidity increases. It is much less clear, however, whether this absorption of water vapor can hydrate the living cells of the leaves and, as a consequence, enhance physiological processes in such cells. The goal of this research was to determine if the absorption of atmospheric water vapor by the atmospheric epiphyte Tillandsia usneoides results in an increase in turgor pressure in leaf epidermal cells that subtend the large trichomes, and, by using chlorophyll fluorescence techniques, to determine if the absorption of atmospheric water vapor by leaves of this epiphyte results in increased photosynthetic activity. Results of measurements on living cells of attached leaves of this epiphytic bromeliad, using a pressure probe and of whole-shoot fluorescence imaging analyses clearly illustrated that the turgor pressure of leaf epidermal cells did not increase, and the photosynthetic activity of leaves did not increase, following exposure of the leaves to high humidity air. These results experimentally demonstrate, for the first time, that the absorption of water vapor following increases in atmospheric humidity in atmospheric epiphytic bromeliads is mostly likely a physical phenomenon resulting from hydration of non-living leaf structures, e.g., trichomes, and has no physiological significance for the plant's living tissues.  相似文献   
110.
A modified metabolic model for mixed culture fermentation (MCF) is proposed with the consideration of an energy conserving electron bifurcation reaction and the transport energy of metabolites. The production of H2 related to NADH/NAD+ and Fdred/Fdox is proposed to be divided in three processes in view of energy conserving electron bifurcation reaction. This assumption could fine‐tune the intracellular redox balance and regulate the distribution of metabolites. With respect to metabolite transport energy, the proton motive force is considered to be constant, while the transport rate coefficient is proposed to be proportional to the octanol–water partition coefficient. The modeling results for a glucose fermentation in a continuous stirred tank reactor show that the metabolite distribution is consistent with the literature: (1) acetate, butyrate, and ethanol are main products at acidic pH, while the production shifts to acetate and propionate at neutral and alkali pH; (2) the main products acetate, ethanol, and butyrate shift to ethanol at higher glucose concentration; (3) the changes for acetate and butyrate are following an increasing hydrogen partial pressure. The findings demonstrate that our modified model is more realistic than previous proposed model concepts. It also indicates that inclusion of an energy conserving electron bifurcation reaction and metabolite transport energy for MCF is sound in the viewpoint of biochemistry and physiology. Biotechnol. Bioeng. 2013; 110: 1884–1894. © 2013 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号