首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   872篇
  免费   78篇
  国内免费   30篇
  980篇
  2024年   2篇
  2023年   17篇
  2022年   17篇
  2021年   32篇
  2020年   23篇
  2019年   24篇
  2018年   21篇
  2017年   24篇
  2016年   25篇
  2015年   32篇
  2014年   46篇
  2013年   45篇
  2012年   27篇
  2011年   31篇
  2010年   31篇
  2009年   42篇
  2008年   29篇
  2007年   42篇
  2006年   39篇
  2005年   49篇
  2004年   21篇
  2003年   23篇
  2002年   29篇
  2001年   20篇
  2000年   17篇
  1999年   17篇
  1998年   25篇
  1997年   18篇
  1996年   18篇
  1995年   10篇
  1994年   15篇
  1993年   10篇
  1992年   15篇
  1991年   9篇
  1990年   10篇
  1989年   12篇
  1988年   11篇
  1987年   8篇
  1986年   7篇
  1985年   16篇
  1984年   8篇
  1983年   5篇
  1982年   11篇
  1981年   11篇
  1980年   11篇
  1979年   6篇
  1978年   8篇
  1976年   3篇
  1975年   3篇
  1972年   2篇
排序方式: 共有980条查询结果,搜索用时 15 毫秒
41.
The development of secondary sexual characters, the petasma, and thelycum growth were studied in Xiphopenaeus kroyeri. In adult females, the thelycum is a single plate and its anterolateral portion is characterized by a reduced hood. The aperture resembles a transverse ridge. In immature stages, the ridge has a space between the plates, which becomes narrower as it reaches the end of development. The female gonopore is ‘comma’ shaped. In adult males, the endopods of the petasma are linked at the dorsomedial margin by a large quantity of cincinnuli. In juveniles, cincinnuli gradually increase in number until they join both endopods. At the end of development the petasma is T-shaped. The male gonopore is C-shaped. The relative growth of the petasma total length versus juvenile body length showed a highly positive allometry, whereas in adults the growth was isometric. For the relationship carapace length versus thelycum width, the juvenile phase of females is characterized by an isometry and the adult phase by a negative allometry.  相似文献   
42.
43.
The parasphenoid is located in the cranium of many vertebrates. When present, it is always an unpaired, dermal bone. While most basal vertebrates have a parasphenoid, most placental mammals lack this element and have an unpaired, dermal vomer in a similar position (i.e. associated with the same bones) and with a similar function. As such, the parasphenoid and the vomer were considered homologous by some early twentieth century researchers. However, others questioned this homology based on comparisons between mammals and reptiles. Here we investigate the parasphenoid bone across the major vertebrate lineages (amphibians, reptiles, mammals and teleosts) including both developmental and evolutionary aspects, which until now have not been considered together. We find that within all the major vertebrate lineages there are organisms that possess a parasphenoid and a vomer, while the parasphenoid is absent within caecilians and most placental mammals. Based on our assessment and Patterson's conjunction tests, we conclude that the non‐mammalian parasphenoid and the vomer in mammals cannot be considered homologous. Additionally, the parasphenoid is likely homologous between sarcopterygian and actinopterygian lineages. This research attempts to resolve the issue of the parasphenoid homology and highlights where gaps in our knowledge are still present.  相似文献   
44.
Chromium (VI) is a priority pollutant in soil and water and poses serious threats to the environment. Microbial fuel cells (MFCs), as a sustainable technology, have been applied to treat heavy-metal-contaminated wastewater. To study MFC application in soil remediation, red clay soil and fluvo-aquic soil were spiked with Cr(VI) and packed into a cathode chamber of MFCs, which were then operated at external resistances of 100 and 1000 Ω for 16 days, with open circuit condition as a control treatment. After the operation, the concentration of dissolved Cr(VI) in supernatant and total Cr(VI) in soil was decreased. Soil type and external resistance significantly affected the current, removal efficiency of Cr(VI), and cathode efficiency. Reducing external resistance improved the removal efficiency. The red soil generated a higher current of MFCs, but showed a lower removal efficiency and cathode efficiency than fluvo-aquic soil, implying that the red soil may contain more electron acceptors that competed with Cr(VI) reduction reaction. Our study demonstrated that MFC-based technology has the potential to remediate Cr(VI)-contaminated soil; the efficiency varied between soil types and can be improved with high current.  相似文献   
45.
46.
Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi‐aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc‐shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool‐shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa.  相似文献   
47.
Snakes exhibit a diverse array of body shapes despite their characteristically simplified morphology. The most extreme shape changes along the precloacal axis are seen in fully aquatic sea snakes (Hydrophiinae): “microcephalic” sea snakes have tiny heads and dramatically reduced forebody girths that can be less than a third of the hindbody girth. This morphology has evolved repeatedly in sea snakes that specialize in hunting eels in burrows, but its developmental basis has not previously been examined. Here, we infer the developmental mechanisms underlying body shape changes in sea snakes by examining evolutionary patterns of changes in vertebral number and postnatal ontogenetic growth. Our results show that microcephalic species develop their characteristic shape via changes in both the embryonic and postnatal stages. Ontogenetic changes cause the hindbodies of microcephalic species to reach greater sizes relative to their forebodies in adulthood, suggesting heterochronic shifts that may be linked to homeotic effects (axial regionalization). However, microcephalic species also have greater numbers of vertebrae, especially in their forebodies, indicating that somitogenetic effects also contribute to evolutionary changes in body shape. Our findings highlight sea snakes as an excellent system for studying the development of segment number and regional identity in the snake precloacal axial skeleton.  相似文献   
48.
The dendritic structure is a disastrous problem of lithium metal batteries as well as other metal rechargeable batteries. The dendritic structures are usually caused by diffusion limitation. Here, a novel strategy is reported to inhibit lithium dendrites based on the understanding of their formation mechanism. An alternating current field perpendicular to the anode is set up, which promotes Li+ movement along the anode surface and prevents ions' deposition on the tips from forming dendrites. Furthermore, an external direct current field parallel to the current is employed, which accelerates the transport of Li+ in electrolytes to mitigate the concentration gradient nearby the anode and thus inhibits the formation of dendritic structures. A simultaneous employment of these two fields gains five times increase of the lifespan of batteries at the high charging current density of 2 mA cm?2, confirming the effectiveness of this strategy in protecting the metal anode and inhibiting lithium dendrites. This strategy may have a wide feasibility since it does not change the materials and structures of batteries.  相似文献   
49.
This article addresses agricultural metabolism and transitions for energy, nitrogen, farm production, self‐sufficiency, and surplus from historical data since the nineteenth century. It builds on an empirical data set on agricultural production and production means in France covering 130 consecutive years (1882–2013). Agricultural transitions have increased the net production and surplus of farms by a factor of 4 and have zeroed self‐sufficiency. The energy consumption remained quasi‐stable since 1882, but the energy and nitrogen structure of agriculture fully changed. With an EROI (energy return to energy invested) of 2 until 1950, preindustrial agriculture consumed as much energy to function as it provided in exportable surplus to sustain the nonagricultural population. The EROI doubled to 4 over the last 60 years, driven, on the one hand, by efficiency improvements in traction through the replacement of draft animals by motors and, on the other hand, by the joint increase in crop yields and efficiency in nitrogen use. Agricultural energy and nitrogen transitions shifted France from a self‐sufficiency agri‐food‐energy regime to a fossil‐dependent food export regime. Knowledge of resource conversion mechanisms over the long duration highlights the effects of changing agricultural metabolism on the system's feeding capacity. Farm self‐sufficiency is an asset against fossil fuel constraints, price volatility, and greenhouse gas emissions, but it equates to lower farm surplus in support of urbanization.  相似文献   
50.
In this article, a kinetic model is developed and presented for biological nutrient removal (BNR) activated sludge (BNRAS) systems in general, but for external nitrification (EN) BNRAS (ENBNRAS) systems in particular. The model is based on the UCTPHO model, but includes some significant modifications, such as anoxic P uptake and associated denitrification by phosphorus accumulating organisms (PAOs). Some key features of the model are described and discussed before the model is presented. Model evaluation will be addressed in another article (Hu et al., 2007).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号