首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1680篇
  免费   239篇
  国内免费   83篇
  2023年   38篇
  2022年   38篇
  2021年   65篇
  2020年   73篇
  2019年   80篇
  2018年   80篇
  2017年   78篇
  2016年   73篇
  2015年   117篇
  2014年   132篇
  2013年   131篇
  2012年   87篇
  2011年   84篇
  2010年   87篇
  2009年   70篇
  2008年   67篇
  2007年   85篇
  2006年   76篇
  2005年   65篇
  2004年   53篇
  2003年   51篇
  2002年   35篇
  2001年   35篇
  2000年   33篇
  1999年   34篇
  1998年   23篇
  1997年   28篇
  1996年   21篇
  1995年   11篇
  1994年   17篇
  1993年   9篇
  1992年   12篇
  1991年   13篇
  1990年   8篇
  1989年   7篇
  1987年   12篇
  1986年   5篇
  1985年   3篇
  1984年   12篇
  1983年   5篇
  1982年   2篇
  1981年   8篇
  1980年   7篇
  1979年   3篇
  1978年   5篇
  1977年   5篇
  1976年   2篇
  1975年   7篇
  1974年   2篇
  1971年   2篇
排序方式: 共有2002条查询结果,搜索用时 15 毫秒
991.
For microorganisms cycling between free‐living and host‐associated stages, where reproduction occurs in both of these lifestyles, an interesting inquiry is whether adaptation to stress during the free‐living stage can impact microbial fitness in the host. To address this topic, the mutualism between the Hawaiian bobtail squid (Euprymna scolopes) and the marine bioluminescent bacterium Vibrio fischeri was utilized. Using microbial experimental evolution, V. fischeri was selected to low (8°C), high (34°C), and fluctuating temperature stress (8°C/34°C) for 2000 generations. The temperatures 8°C and 34°C were the lower and upper growth limits, respectively. V. fischeri was also selected to benign temperatures (21°C and 28°C) for 2000 generations, which served as controls. V. fischeri demonstrated significant adaptation to low, high, and fluctuating temperature stress. V. fischeri did not display significant adaptation to the benign temperatures. Adaptation to stressful temperatures facilitated V. fischeri’s ability to colonize the squid host relative to the ancestral lines. Bioluminescence levels also increased. Evolution to benign temperatures did not manifest these results. In summary, microbial adaptation to stress during the free‐living stage can promote coevolution between hosts and microorganisms.  相似文献   
992.
993.
994.
Chimpanzees have been studied for nearly 300 combined years across Africa, but aside from their roles as predators or prey, remarkably little is known about the diverse species with whom they share habitats. We calculated likely chimpanzee encounter rates with sympatric mammals in the Issa Valley, Tanzania, through modelling actual researcher encounter rates with all medium and large mammals. Compared to other long‐term chimpanzee study sites, Issa had a relatively high diversity in medium and large mammal species present, with 36 species documented. We encountered common duiker (Sylvicapra grimmia) most frequently, followed by yellow baboons (Papio cynocephalus) and bushbuck. Chimpanzees ranked fifth overall. Chimpanzees, on the other hand, were predicted to most frequently encounter bushbuck, klipspringer and hartebeest—all woodland species. We compare these results to published literature and contextualise them in light of reconstructing diverse mammalian communities in which hominins lived during the Plio‐Pleistocene and the use of chimpanzees as flagship species for conservation policy.  相似文献   
995.
Small angle X-ray scattering (SAXS) measures comprehensive distance information on a protein's structure, which can constrain and guide computational structure prediction algorithms. Here, we evaluate structure predictions of 11 monomeric and oligomeric proteins for which SAXS data were collected and provided to predictors in the 13th round of the Critical Assessment of protein Structure Prediction (CASP13). The category for SAXS-assisted predictions made gains in certain areas for CASP13 compared to CASP12. Improvements included higher quality data with size exclusion chromatography-SAXS (SEC-SAXS) and better selection of targets and communication of results by CASP organizers. In several cases, we can track improvements in model accuracy with use of SAXS data. For hard multimeric targets where regular folding algorithms were unsuccessful, SAXS data helped predictors to build models better resembling the global shape of the target. For most models, however, no significant improvement in model accuracy at the domain level was registered from use of SAXS data, when rigorously comparing SAXS-assisted models to the best regular server predictions. To promote future progress in this category, we identify successes, challenges, and opportunities for improved strategies in prediction, assessment, and communication of SAXS data to predictors. An important observation is that, for many targets, SAXS data were inconsistent with crystal structures, suggesting that these proteins adopt different conformation(s) in solution. This CASP13 result, if representative of PDB structures and future CASP targets, may have substantive implications for the structure training databases used for machine learning, CASP, and use of prediction models for biology.  相似文献   
996.
Bilosomes were developed in order to investigate their efficacy as nanocarriers for transdermal delivery of Tizanidine HCl (TZN), a skeletal muscle relaxant with low oral bioavailability. Full factorial experimental design consisting of 27 combinations was generated to study the effects of surfactant type, surfactant-to-cholesterol ratio and the amount of bile salt on the entrapment efficiency (EE), the vesicle size (VS) and in vitro dissolution of the TZN-loaded bilosomes. The permeation through the stratum cornea was optimized with the vertical diffusion assembly using excised rat skin. The permeation parameters of the selected bilosomes were compared to the unformulated drug and it was shown that TZN-B24 exhibited the highest enhancement ratio (ER?=?8.8).The optimal formula (TZN-B24) consisting of span 60 in a ratio with cholesterol of 1:1 and 20?mg of bile salt was obtained by employing the desirability function of Design-Expert® software. The mathematical model used for the optimization was validated by comparing the predicted values of the EE (82.3%) and the VS (165.8?nm) with the experimental values of EE?=?84.42% and of VS?=?161.95?nm. TZN-B24 displayed high zeta potential which contributed to its good stability. It was evident from the results of this study that incorporating TZN in bilosomes improved significantly its permeation through the skin barrier and thus bilosomes can offer a potential nanoplatform using the transdermal route to improve the bioavailability of the drug.  相似文献   
997.
Optimality models collapse the vagaries of genetics into simple trade-offs to calculate phenotypes expected to evolve by natural selection. Optimality approaches are commonly criticized for this neglect of genetic details, but resolution of this disagreement has been difficult. The importance of genetic details may be tested by experimental evolution of a trait for which an optimality model exists and in which genetic details can be studied. Here we evolved lysis time in bacteriophage T7, a virus of Escherichia coli. Lysis time is equivalent to the age of reproduction in an organism that reproduces once and then dies. Delaying lysis increases the number of offspring but slows generation time, and this trade-off renders the optimum sensitive to environmental conditions: earlier lysis is favored when bacterial hosts are dense, later lysis is favored when hosts are sparse. In experimental adaptations, T7 evolved close to the optimum in conditions favoring early lysis but not in conditions favoring late lysis. One of the late lysis adaptations exhibited no detectable phenotypic evolution despite genetic evolution; the other evolved only partly toward the expected optimum. Overall, the lysis time of the adapted phages remained closer to their starting values than predicted by the model. From the perspective of the optimality model, the experimental conditions were expected to select changes only along the postulated trade-off, but a trait outside the trade-off evolved as well. Evidence suggests that the model's failure ultimately stems from a violation of the trade-off, rather than a paucity of mutations.  相似文献   
998.
Cryptic structure of species complexes confounds an accurate accounting of biological diversity in natural systems. Also, cryptic sibling species often become specialized to different ecological conditions, for instance, with host specialization by cryptic parasite species. The fungus Microbotryum violaceum causes anther smut disease in plants of Caryophyllaceae, and the degree of specialization and gene flow between strains on different hosts have been controversial in the literature. We conducted molecular phylogenetic analyses on M. violaceum from 23 host species and different geographic origins using three single-copy nuclear genes (beta-tub, gamma-tub, and Ef1alpha). Congruence between the phylogenies identified several lineages that evolved independently for a long time. The lineages had overlapping geographic ranges but were highly specialized on different hosts. These results thus suggest that M. violaceum is a complex of highly specialized sibling species. Two incongruencies between the individual gene phylogenies and one intragene recombination event were detected at basal nodes, suggesting ancient introgression events or speciation events via hybridizations. However, incongruencies and recombination were not detected among terminal branches, indicating that the potentials for cross-infection and experimental hybridization are often not sufficient to suggest that introgressions would likely persist in nature.  相似文献   
999.
Adaptation to changing environmental conditions represents a challenge to parthenogenetic organisms, and until now, how phenotypic variants are generated in clones in response to the selection pressure of their environment remains poorly known. The obligatory parthenogenetic root‐knot nematode species Meloidogyne incognita has a worldwide distribution and is the most devastating plant‐parasitic nematode. Despite its asexual reproduction, this species exhibits an unexpected capacity of adaptation to environmental constraints, for example, resistant hosts. Here, we used a genomewide comparative hybridization strategy to evaluate variations in gene copy numbers between genotypes of M. incognita resulting from two parallel experimental evolution assays on a susceptible vs. resistant host plant. We detected gene copy number variations (CNVs) associated with the ability of the nematodes to overcome resistance of the host plant, and this genetic variation may reflect an adaptive response to host resistance in this parthenogenetic species. The CNV distribution throughout the nematode genome is not random and suggests the occurrence of genomic regions more prone to undergo duplications and losses in response to the selection pressure of the host resistance. Furthermore, our analysis revealed an outstanding level of gene loss events in nematode genotypes that have overcome the resistance. Overall, our results support the view that gene loss could be a common class of adaptive genetic mechanism in response to a challenging new biotic environment in clonal animals.  相似文献   
1000.
Rapid adaptation can prevent extinction when populations are exposed to extremely marginal or stressful environments. Factors that affect the likelihood of evolutionary rescue from extinction have been identified, but much less is known about the evolutionary dynamics (e.g., rates and patterns of allele frequency change) and genomic basis of successful rescue, particularly in multicellular organisms. We conducted an evolve‐and‐resequence experiment to investigate the dynamics of evolutionary rescue at the genetic level in the cowpea seed beetle, Callosobruchus maculatus, when it is experimentally shifted to a stressful host plant, lentil. Low survival (~1%) at the onset of the experiment caused population decline. But adaptive evolution quickly rescued the population, with survival rates climbing to 69% by the F5 generation and 90% by the F10 generation. Population genomic data showed that rescue likely was caused by rapid evolutionary change at multiple loci, with many alleles fixing or nearly fixing within five generations of selection on lentil. Selection on these loci was only moderately consistent in time, but parallel evolutionary changes were evident in sublines formed after the lentil line had passed through a bottleneck. By comparing estimates of selection and genomic change on lentil across five independent C. maculatus lines (the new lentil‐adapted line, three long‐established lines and one case of failed evolutionary rescue), we found that adaptation on lentil occurred via somewhat idiosyncratic evolutionary changes. Overall, our results suggest that evolutionary rescue in this system can be caused by very strong selection on multiple loci driving rapid and pronounced genomic change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号